SuperNEMO searches for the proposed neutrinoless double-beta decay process ($0\nu\beta\beta$), an interaction that would:

- Violate lepton number conservation, creating matter.
- Only be possible if neutrinos were Majorana particles ($\nu = \bar{\nu}$).
- Have a half-life $> \text{10^{25}-10^{26}}$ years (eliminating backgrounds is key).
- Occur in isotopes that undergo Standard Model double-beta decay ($2\nu\beta\beta$).

We minimise contamination with:

- Radio-pure components.
- Topological cuts to discriminate signal from background.

The 0$\nu\beta\beta$ signature is 2 electrons whose energies add up to the total decay energy Q_β. There is an irreducible background from the high-energy tail of the 2$\nu\beta\beta$ spectrum.

Backgrounds: Radon & Bismuth

214Bi ($Q_\beta = 3.2$ MEV) contaminates the source foil (208Tl decay chain). A decay product of 214Pb in tracker gas, it is deposited on foil surfaces and tracker wires.

Extract the activity of each detector component using α-track length as discriminating variable.

Target is 10 mBq / kg in the foil and 150 mBq / m2 in the tracker.

Backgrounds: Thallium

208Tl ($Q_\beta = 5.0$ MEV) contaminates the source foil (208Pb decay chain). Target activity: 2 mBq / kg.

We preselect events with:

- Two-electron tracks associated to calorimeter hits.
- A common vertex in the foil.
- No additional calorimeter hits (signature of γ's in the event).

The primary signal/background discriminator is the 2-electron energy sum.

The SuperNEMO Demonstrator Module uses a unique tracker-calorimeter architecture to characterise event topology, making it sensitive to the underlying $0\nu\beta\beta$ mechanism.

The SuperNEMO Demonstrator Module consists of:

- A source foil containing 7kg of β-decaying 76Ge.
- 2034 drift cells to track particle trajectories.
- 712 optical modules to measure particle energies.

A proposed full SuperNEMO, consisting of 20 Demonstrator-like modules, would be sensitive to a 0$\nu\beta\beta$ half-life $> 10^{24}$ years.

With target background activities, 2.5 years of running, 7kg of 76Ge, and cuts on these variables, the SuperNEMO Demonstrator Module is sensitive to $\text{T}_{1/2} > 5.4 \times 10^{26}$ years. For this exposure, we expect 1 background event or less.

A boosted decision tree (BDT) helps us exploit the full event information, increasing sensitivity to:

$$\text{T}_{1/2} > 5.9 \times 10^{26} \text{ years} \quad (90\% \text{ C.L.})$$

The BDT helps us maintain sensitivity even if backgrounds exceed our targets.

Estimating Sensitivity

We estimate the sensitivity of the detector to $0\nu\beta\beta$ with a Monte Carlo simulation. The primary background comes from radon and its decay products. We use the BDT to discriminate between $0\nu\beta\beta$ signal and background.

With target background activities, 2.5 years of running, 7kg of 76Ge, and cuts on these variables, the SuperNEMO Demonstrator Module is sensitive to $\text{T}_{1/2} > 5.4 \times 10^{26}$ years. For this exposure, we expect 1 background event or less.

A boosted decision tree (BDT) helps us exploit the full event information, increasing sensitivity to:

$$\text{T}_{1/2} > 5.9 \times 10^{26} \text{ years} \quad (90\% \text{ C.L.})$$

The BDT helps us maintain sensitivity even if backgrounds exceed our targets.

Signal & Background

The 0$\nu\beta\beta$ signature is 2 electrons whose energies add up to the total decay energy Q_β. There is an irreducible background from the high-energy tail of the 2$\nu\beta\beta$ spectrum.

Electrons curve this way in the foil. 214Bi activities: after 200 days 214Bi, 214Po, 214Pb.

Fig 1

- The SuperNEMO Demonstrator Module at LSM in France, which will be closed in the coming weeks.
- The primary signal/background discriminator is the 2-electron energy sum.
- To measure contamination, select a characteristic 214Bi0 topology.
- Extract the activity of each detector component using α-track length as discriminating variable.
- Target is 10 mBq / kg in the foil and 150 mBq / m2 in the tracker.
- With target background activities, 2.5 years of running, 7kg of 76Ge, and cuts on these variables, the SuperNEMO Demonstrator Module is sensitive to $\text{T}_{1/2} > 5.4 \times 10^{26}$ years. For this exposure, we expect 1 background event or less.
- A boosted decision tree (BDT) helps us exploit the full event information, increasing sensitivity to:

$$\text{T}_{1/2} > 5.9 \times 10^{26} \text{ years} \quad (90\% \text{ C.L.})$$

Fig 2

- The 0$\nu\beta\beta$ electron energy spectrum, showing a simulated $0\nu\beta\beta$ decay event.
- Fig 6: A fractional fit in track length distinguishes the components of α events.

Fig 3

- The fractional fit in track length distinguishes the components of α events.

Fig 4

- Overhead view of a subsection of the detector (trimmed for clarity).
- SuperNEMO's tracker/calorimeter design lets us look at other variables: individual energies, angle between tracks, vertex separation, relative timing...

Fig 5

- Other variables used in machine learning to improve signal/background separation. 0$\nu\beta\beta$ signal in red, 2$\nu\beta\beta$ background in blue, and background due to β-decaying natural samples in green, pink, and yellow.

Fig 6

- The discriminant variable $S_{\nu\beta\beta}$ and this way on this side of the foil...
- Summed energy should be Q_β for $0\nu\beta\beta$, but less for $2\nu\beta\beta$.

Fig 7

- The 0$\nu\beta\beta$ electron energy spectrum, showing a simulated $0\nu\beta\beta$ decay event.
- The primary signal/background discriminator is the 2-electron energy sum.

Fig 8

- The 0$\nu\beta\beta$ electron energy spectrum, showing a simulated $0\nu\beta\beta$ decay event.