Solar neutrino capture cross-section for 76Ge nuclei
Almaz Fazliakhmetov1,2, Lev Inzhechik1, Grigory Koroteev1, Yury Lutostansky3, Victor Tikhonov2, Andrey Vyborov1,2

1Moscow Institute of Physics and Technology, Russia; 2Institute of Nuclear Research, Russian Academy of Sciences; 3National research center "Kurchatov Institute", Russia

Introduction

In the experiments of GERDA and LEGEND studying the double beta decay of the 76Ge isotope, the absorption of solar neutrinos by the 76Ge nucleus as a result of successive reactions

$$\nu_e + \frac{76}{28}Ge \rightarrow \frac{74}{26}As + e^-$$

induces background events indistinguishable from the studied beta decay. In this paper, the neutrino capture rate was calculated from the formula:

$$R = \int_0^\infty \rho_{\text{Solar}}(E_\nu) \sigma_{\text{total}}(E_\nu) dE_\nu$$

Taking into account the transitions to both discrete and continuous (resonant) states of the daughter nucleus (fig. 1).

Cross-section calculations

To calculate the neutrino capture cross-section both discrete and continuous (resonant) states of the 76As nucleus were considered.

$$\sigma_{\text{total}}(E_\nu) = \sigma_{\text{discrete}}(E_\nu) + \sigma_{\text{continous}}(E_\nu)$$

$$\sigma_{\text{continous}}(E_\nu) = \frac{\sum \frac{\sigma_{\text{Gamow-Teller}}(\Delta E)}{\Delta E}}{\sum \frac{\sigma_{\text{Gamow-Teller}}(\Delta E)}{\Delta E} + \sum \frac{\sigma_{\text{Gamma radiation}}(\Delta E)}{\Delta E}}$$

The peculiarity of this work composed in taking into account the contribution of both resonances (isobaric analog and Gamow-Teller) [4]:

$$\sigma(E) = \sigma_{\text{IAAS}}(E) - \sigma_{\text{IAAS}}(E)$$

This work was done on the assumption that at excitation energies of the 76As nucleus above E_{dep}, neutron emission takes place with the formation of a stable nucleus of 76As isotope (fig. 1), so such transitions to states with energies higher than E_{dep} were not considered. Fig. 4 presents the spectrum of the 76As nucleus excitation energy, which repeats the shape of the experimental strength function [5]. The narrow IAS peak lies above E_{dep} and therefore the IAS does not contribute to the total capture cross section. The calculation took only the tail of the GTR (Gaussian distribution), lying below the level of E_{dep} (on the graph it is marked with a dashed line).

The strength function describing the probability of transition to one or another excited state takes into account the contribution of both resonances (isobaric analog and giant Gamow-Teller) [6]:

$$\sigma(E) = \sigma_{\text{IAAS}}(E) - \sigma_{\text{IAAS}}(E)$$

Conclusion

In the present work the contribution of the Gamow-Teller resonance below the neutron separation energy was considered. It increased the estimation of the neutrino capture rate by the 76Ge nucleus by 10% as compared with [3]. On the next stage it is proposed to estimate the contribution of the resonance states above E_{dep} requiring further development of the theory. In addition, it is planned to study the process (*) as a solar neutrino background for the GERDA and LEGEND experiment taking into account the real geometry of the detectors.

Table 1. Rate of solar neutrino capture

<table>
<thead>
<tr>
<th>Capture (in SNU)</th>
<th>pep</th>
<th>hep</th>
<th>N</th>
<th>F</th>
<th>O</th>
<th>B</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>only discrete states</td>
<td>1.369</td>
<td>0.0451</td>
<td>0.102</td>
<td>0.021</td>
<td>0.828</td>
<td>13.54</td>
<td>15.9</td>
</tr>
<tr>
<td>discrete states and GTR</td>
<td>1.369</td>
<td>0.0568</td>
<td>0.102</td>
<td>0.021</td>
<td>0.828</td>
<td>15.22</td>
<td>17.59</td>
</tr>
<tr>
<td>GTR contribution</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>11%</td>
</tr>
</tbody>
</table>

References

Acknowledgements

This work is supported by the Ministry of Education and Science of the Russian Federation under the contract No. 3.3008.2017/PP and the Russian Foundation for Basic Research (project no. 18-02-00670)

Contact

Andrey Vyborov
MIPT, INR RAS
Email: vyborov94@gmail.com
Phone: +7 (968) 628-13-73