Sources of monoenergetic electrons from decay of 83mKr for KATRIN

M. Suchopár¹, D. Véno², O. Dragoun², O. Lebeda², M. Ryšavý², J. Sentkerestiová², A. Špařek²
M. Slezák¹, K. Schlösser¹, M. Sturm¹, M. Arenz³, C. Noll⁴ for the KATRIN collaboration

¹Nuclear Physics Institute, Czech Academy of Sciences, 250 68 Řež, Czech Republic
²Max-Planck Institut für Physik, Föhringer Ring 6, 80805 München, Germany
³Institute for Nuclear Physics, KIT, Herrmann-von-Helmholtz Platz 1, 76248 Eggenstein-Leopoldshafen, Germany
⁴Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, 53117 Bonn, Germany

E-mail: suchopar@ujf.cas.cz, venos@ujf.cas.cz

We acknowledge the support of Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17PF3), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (04HG-1011) in Germany. Ministry of Education, Youth and Sports (CZ.1.07/2.3.00/30.0029) and Czech Science Foundation grant 21-07330 and AC02070201, in the Czech Republic.

Motivation and requirements

- Energy scale distortions have impact on precise m_α measurements
- Accurate energy calibration of spectrometers and high voltage dividers
- 83mKr (T$_{1/2}$ = 1.83 hours) generated in parent 83Rb (T$_{1/2}$ = 86.2 days) decay
- Source of isotopically emitted monoenergetic conversion electrons K-32 (17.8 keV), L$_{1,2}$-32 (30.4 keV), N$_{1,2}$-32 (32.1 keV) from the 32.2 keV 83mKr transition; K-32 line has suitable energy just 750 eV below the tritium β-spectrum endpoint (18575 eV)
- Solid conversion electron sources developed to provide excellent energy stability which meets the requirements for KATRIN energy scale stability at a level of ±3 ppm/month (required high voltage stability is within ±60 mV at 18.6 kV)

Conversion electron sources for KATRIN

- **GKrS**: systematic studies of space charge effects in WGTs, energy calibration, voltages stability (incl. workfunctions) and check of the whole KATRIN electron beamline will be possible
- **CKrS**: systematic investigations and energy calibration of the main spectrometer will be possible during its operation
- **IKrS**: change of the K-32 line position detected in MoS spectra will indicate a possible instability of the common MoS and MS high voltage during a typical 2 month KATRIN run
- **EKs**: evaporated sources used for energy calibration and efficiency testing of the TRISTAN detector, which allows a higher count rate and will be used in keV-scale sterile neutrino search

Activity production

Cyclotron U-120M in NPI

- 83mKr retention in substrate reaches 95%
- 83mKr retention in substrate reaches 95%
- 83mKr retention in substrate reaches 95%
- Auxiliary spectrometer of the MAC-E filter type connected to common high voltage as the main spectrometer

Monitor spectrometer

- **GKrS**: systematic studies of space charge effects in WGTs, energy calibration, voltages stability (incl. workfunctions) and check of the whole KATRIN electron beamline will be possible
- **CKrS**: systematic investigations and energy calibration of the main spectrometer will be possible during its operation
- **IKrS**: change of the K-32 line position detected in MoS spectra will indicate a possible instability of the common MoS and MS high voltage during a typical 2 month KATRIN run
- **EKs**: evaporated sources used for energy calibration and efficiency testing of the TRISTAN detector, which allows a higher count rate and will be used in keV-scale sterile neutrino search

Conclusion

- 83mKr sources of monoenergetic conversion electrons based on solid implanted or zeolite sources were developed in NPI CAS for the KATRIN energy calibration, voltage stability and systematic measurement purposes
- The gaseous krypton generator is an adjustable assembly that meets the ITEP-TLK safety requirements and is ready for the KATRIN tritium operations

References

D. Véno et al., JINST 9 (2014) P12010
M. Zbořil et al., JINST 8 (2013) P03009
M. Erhardt et al., JINST 9 (2014) P06022
J. Sentkerestiová et al., JINST 13 (2018) P04018
V. Hannen et al., JINST 6 (2011) P01013