HOLMES is an experiment with the aim to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the Electron Capture decay of the artificial isotope ^{163}Ho. The most suitable detectors for this type of low temperature thermal detectors. HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted ^{163}Ho nuclei with the aim to extract information on neutrino mass with a sensitivity below 2 eV. As soon as the embedding technique will be optimized the first sub-arrays will provide useful data about the EC decay of ^{163}Ho together with a first limit on neutrino mass.

Overview

- **Electron capture from shell**
 - Sensor: TES Mo/Au bilayers, critical temperature
 - 4×16 linear sub-array designed for high implant efficiency
 - Absorber: Gold, 2 µm thick for full e^{-} absorption (sidecar design)

- **Gold deposition**
 - 4×16 sub-array Single pixel

- **Gold production and embedding**
 - ^{163}Ho production and embedding

- **Electron capture spectroscopy**
 - ^{163}Ho EC = 2.833 keV; ^{163}Ho absorption (sidecar design)

- **HOLMES target**
 - Microcalorimeters based on Transition Edge Sensors with ^{163}Ho implanted Au absorber
 - Pixel activity of A_{EC} = 300 Bq/det
 - Energy resolution: $\sigma(E) = 2\text{eV}$
 - 1000 channels for 3×10^9 events collected in $t_f = 3$ years

Production by neutron activation of enriched ^{163}Er

$^{163}\text{Er}^{(n, \gamma)^{164}\text{Er}} \rightarrow ^{164}\text{Ho} + n, T_{\text{fission}} = 20\text{d}$

- Irradiation at the ILL reactor in Grenoble with a high thermal flux $\Phi_h = 1.3 \times 10^{15}$ n/cm2/s
- Cross section burn up $^{163}\text{Ho}^{(n, \gamma)^{164}\text{Ho}}$ not negligible (~ 200 b)
- Unavoidable $^{163}\text{Ho}^{(n, \gamma)^{163}\text{Ho}}$ (most from $^{163}\text{Er}^{(n, \gamma)^{164}\text{Er}}$)

Mass separation based on ion implanter

- From MC simulations ~ 300 Bq/det, the ^{163}Ho concentration in absorbers saturate because ^{163}Ho sputters off Au from absorber
- Effect compensated by Au co-evaporation during the implantation procedure
- Absorbers finalization with 1 µm Au layer deposited in situ to avoid oxidation
- Au deposition rate = 100 nm/hour (tunable with RF power or Ar energy)

Deposition and target chamber

- To obtain $A_{\text{EC}} = 300$ Bq/det, the ^{163}Ho concentration in absorbers saturate because ^{163}Ho sputters off Au from absorber
- Effect compensated by Au co-evaporation during the implantation procedure
- Absorbers finalization with 1 µm Au layer deposited in situ to avoid oxidation

Detectors and read-out

- **Low Temperature microcalorimeters**
 - Sensor: TES Mo/Au bilayers, critical temperature $T_c = 100$ mK
 - Absorber: Gold, 2 µm thick for full e^{-} absorption (sidecar design)
 - Produced @ NIST (Boulder, CO, USA)
 - ^{163}Ho implanting and absorber finalization @ INFN-GE (Italy)
 - 4×16 linear sub-array designed for high implant efficiency

Microwave rf-SQUID multiplexing read-out

- SQUID coupled with DC biased TES and a 4/3-wave resonant circuit
- Readout with flux ramp demodulation to linearize the SQUID response
- $N_{\text{det}} = 33$
- Multiplexer designed by NIST
 - 33 resonances packed in 500 kHz
 - 2 kHz BW per resonance (for a time resolution ~1 µs)
 - Resonators spacing ~14 MHz (to avoid crosstalk)

Single pixel characterization with calibration source

- ROAC2-based read-out system: demodulation and triggering in real time performed by FPGA Virtex-6
- A rise time of 15 µs and a sampling frequency of $f_{\text{sample}} = 500$ kHz allow an effective time resolution of 3 µs by Wiener filtering and Singular Value Decomposition-based algorithms
- The development of a 64-channel read-out and multiplexing system is currently in progress
- This setup will be fundamental to acquire the data from the first two microcalorimeter 4×16 sub-arrays with ^{163}Ho nuclei implanted starting from 2019

Neutrino 2018 - XXVIII International Conference on Neutrino Physics and Astrophysics

Andrea.Giachero@mi.infn.it