DETECTING LIGHT IONS AND ELECTRONS WITH TRIMS SILICON DETECTORS

W.-J. Baek, A.P. Vizcaya Hernández for the TRIMS collaboration

Goal: measure the molecular tritium (T_2) beta decay branching ratio to the bound state 3HeT^+. Understand the TRIMS energy reconstruction and branching ratios by modeling scattering interactions of ions and beta electrons inside the dead layer.

- Thickness: 500 µm
- Dead layer: 100 nm

PIPS Canberra silicon detector

Ion energy vs Time of Flight (TOF)
Energy deposition of ions and betas in the silicon detectors

- Simulations with SRIM and KESS of ion and beta interactions in the dead layer

- Ion species-dependent interactions include:
 - Backscattering
 - Stopping
 - Energy deposited in dead layer

- Energy deposition of beta electrons
 - Electrons in energy range from 5 keV to 80 keV
 - Mean value for energy loss at each energy step