Neutrinoless Double Beta-Decay Overview

The COBRA collaboration aims to search for $0
\nu$2β-decay, a lepton-number violating process which could provide information about new physics beyond the current Standard Model using CdZnTe detectors at the LNGS in Italy. The COBRA setup has recently been upgraded (extended demonstrator - XDEM). For XDEM, six times larger detectors with a guard-ring to veto signals from surface contaminations have been installed into the existing setup. Together with some other improvements, XDEM is targeted to reduce the specific backgrounds found in the demonstrator phase. This poster will give a summary of the evaluation of the new detectors in overground laboratories, including the measurement of key parameters like the ideal working point, the efficiency and the energy resolution of each detector. Results from the commissioning of the XDEM into the LNGS setup and the current status of the experiment are also presented.

Neutrinoless Double Beta-Decay

• Massive neutrinos could be window to BSM physics
• Neutrinoless double beta-decay ($0
\nu$2β-decay) possible with massive neutrinos
• Very rare process, $1/21 > 10^{29}$ yr → Not yet detected
• If observed would imply that $\nu = \text{Majorana particle}$, reveal information about absolute ν mass-scale and underlying BSM-physics (if observed in 116 isotope) and potentially be the first Lepton Number violating process to be observed

Pre-Studies

• Two detector designs and two different manufacturers (eV and Redlen)
 – Choose quad-grid over single grid for superior energy resolution + coincidence veto [3]
 – Detectors from both manufacturers used for XDEM
• Depth of interaction can be extracted from pulses in CPGs, important for reducing BG from electrodes [4]
• GR major tool to minimize surface-related BG. Reduction-factor 3200 for alphas, 85% efficiency for gammas[5]

Background Improvements

• Based on experience from demonstrator phase
• GR + interaction depth give 4e veto for surface events
• Larger detectors reduce surface-to-volume ratio and inactive mass
• New coating with highly reduced 40K content and Pt-less electrode for Redlen detectors
• Continuous γ-flushing during characterization and storage
• Electric-polishing of cooper parts for detector housing
• Reduced number of materials for easier control of radio-purity

Characterization

• Extensive campaign to characterize new detectors in 2017/18
• Determination of working point, energy resolution, efficiency and leakage currents, about 2500 individual measurements in total
• Figure of merit for working point: Sensitivity = $Q_{\beta\beta} / \sqrt{N}$

Mean FWHM at 662 keV of installed detectors during evaluation for XDEM 2.4 % compared to 2.8 % for demonstrator phase, corresponding to about 1.3 % FWHM at $Q_{\beta\beta}$ of 130Cd

COMMISSIONING

• Two week shift to install new detectors and electronics into setup in March 2018
• Dismantling of large parts of existing setup
• Major extensions of nearly all parts of experiment

Status

• Stable data taking since April
• Due to high voltage and routing problems, only 15/36 sectors are working at the moment
• Preliminary results indicate performance comparable to results from characterization
• First analysis of 2.3 kg of data · with only data-quality cuts applied - shows just two near-electrode events above 2MeV
• Manufacturing of improved HV filter and new signal PCB
• Exchange in July to achieve full potential of XDEM

Summary

• COBRA XDEM major upgrade of existing demonstrator
• Characterization campaign demonstrated good performance of new detectors
• Preliminary data taking with partly working setup ongoing
• Expect fully working setup end of July

References

Acknowledgement & Contact

COBRA is kindly supported by the DFG (2012/13/5/1/SDP 1133/3-1).

Robert Temminghoff

tu

Technische Universität Dortmund

Experimentelle Physik IV

robert.temminghoff@tu-dortmund.de

tucobra-experiment.org