Waveform Reconstruction of IBD and Muon Events in JUNO

Michaela Schever on behalf of the JUNO collaboration,
PhD student Forschungszentrum Jülich GmbH, RWTH Aachen University,
m.schever@fz-juelich.de

Physics Motivation

- Measurement of neutrino mass hierarchy: confirm either normal hierarchy (NH) or inverted hierarchy (IH)
- Phase of oscillation is different for NH and IH
- Requires good energy resolution (design: 3% \sqrt{E/\text{MeV}})
- Discrimination between NH and IH with \sim 3\sigma after 6 years with E_{\text{unit}} = 3\% and \sim 100,000 IBD events

Introduction

- Antineutrinos are detected via the Inverse Beta Decay (IBD): \(\bar{\nu}_e + p \rightarrow e^+ + n \)
- Positron annihilates with electron into 2 photons
- Total visible energy \(E_{\text{vis}} \) is related to kinetic energy of antineutrino: \(E_{\nu_e} = E_{\text{vis}} - 782 \text{ keV} \)
- PMTs convert photons into photo-electrons (PE)
- IBD events have a low occupancy rate (=“hit density”), typically \leq 3 PE per PMT
- Waveform is FADC trace of the PMT read-out electronics
- Sample frequency is 1 GHz
- Waveforms feature PEs as peaks

IBD waveform reconstruction methods under study:
- Deconvolution method
- Waveform template fit
- Waveform integration
- Hit counting

Methods

- Deconvolution Method:
 - Waveform results from convolution of photon hit distribution with single PE (SPE) response plus noise
 - Deconvolution method reconstructs charge and time of each hit based on Discrete Fourier Transforms (DFT) from the integral of the peak area and peak position
 - SPE hit reconstruction possible from frequency domain

Waveform Template Fit:

- Waveform is fitted with template fit
- Template describes SPE response
- Charge and time are reconstructed from fit parameters

Results

- Charge resolution for threshold at 4% of signal height
- Deconvolution method: Residual charge non-linearity of 1%

Muon Waveform Reconstruction

- Waveforms of muon events feature a high number of PE (NPE), typically 500 – 5000 PE
- Reconstruction of each photon like for IBD events not possible
- First hit time (fht), charge, and rise time are needed to reconstruct muon tracks for muon vetoes

Methods

- Time:
 - Find fht in typically steeply rising edge of waveform
 - Use Constant Fraction Discriminator (CFD) approach:
 - Set fht when waveform passes threshold
 - Set threshold as relative fraction of waveform height

- Charge:
 - Charge reconstruction done by integrating the entire waveform after baseline correction

Results

- Time: Best fht resolution for threshold at 4% of signal height
- Fht resolution: 3.4 ns
- Charge: Charge resolution with RMS = 0.17 obtained

Conclusion & Outlook

- IBD waveform reconstruction: IBD results show a charge non-linearity of 1%
- Further studies are conducted on the time reconstruction for each single PE
- IBD waveform reconstruction by deep learning recently started

- Muon waveform reconstruction allows good muon track reconstruction for muon veto
- Muon waveform reconstruction study continued based on deep learning

References

1. JUNO collaboration, F. An et al., Neutrino Physics with JUNO, 1507.05613.
3. Zeyaun Yu, Institute of High Energy Physics, Beijing
4. Yaping Cheng, Forschungszentrum Jülich GmbH & Institute of High Energy Physics, Beijing
5. Christoph Genster et al., Muon reconstruction with a geometrical model in JUNO, JINST, 13 (2018) T03003

Md. der Helmholtz-Gemeinschaft