¹⁰⁰Mo $\beta\beta$ decay search in the CUPID-Mo experiment with enriched scintillating bolometers

D.V. Poda on behalf of the CUPID-Mo Collaboration

CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France Institute for Nuclear Research, Kyiv, Ukraine CSNSM

denys.poda@csnsm.in2p3.fr

- 1130.3

- 539.5

 $^{100}_{44}$ Ru

http://cupid-mo.mit.edu

7 countries, 15 institutions, ~110 scientists

INIVERSIT

I: ¹⁰⁰Mo as a ββ source

Double-beta decay of 100Mo

Standard Model two-neutrino decay

4–9 June Heidelberg

gs \rightarrow gs: $T_{1/2} = (7.1\pm0.4) \times 10^{18}$ yr (5.6% uncertainty) gs $\rightarrow 0_1$: $T_{1/2} = 6.7^{+0.5}_{-0.4} \times 10^{20}$ yr (6.6% uncertainty) (both half-lives are average values [NPA 935(2015)52])

Beyond Standard Model neutrinoless process gs \rightarrow gs: $T_{1/2} \ge 1.1 \times 10^{24}$ yr @90% CL (NEMO-3 [PRD 92(2015)072011])

II: Developments toward CUPID-Mo

R&D of Li₂¹⁰⁰MoO₄ scintillating bolometers by LUMINEU

✓ Molybdenum purification

Sublimation & recrystallization from aqueous solutions

Optimization of crystal growth by LTG Cz method High optical quality & crystal yield (~80–85% of a charge) Low total irrecoverable losses of ^{100}Mo (~3%)

✓ Dedicated R&D to control a ⁴⁰K content

http://lumineu.in2p3.fr

Advantages of ¹⁰⁰Mo as a $\beta\beta$ isotope

\checkmark One of the highest $Q_{\beta\beta}$ -values

- ✓ Favorable theoretical predictions Expected one of the fastest $0_{\nu\beta\beta}$ decay rate Hint on a minimal impact of the g_A quenching on $T_{1/2}$
- ✓ Reasonably high natural abundance, availability of industrial enrichment to >95%
- ✓ Variety of ¹⁰⁰Mo-containing scintillators perspective as scintillating bolometers Source=Detector technique: ~100% efficiency High energy resolution: ~0.2% FWHM Particle identification: >99.9% rejection of α 's (e.g., a dominant Bkg in CUORE [EPJC 77(2017)543]) Warning: a slow response requires pileup control

¹³⁶Xe

0.36

5.7

4000 ₩ 3500 $^{150}_{0}$ Nd $^{96}_{o}$ Zr $E_{\beta}(^{214}\text{Bi}) = 3270 \text{ ke}$ ${}^{82}_{\bullet}$ Se ${}^{100}_{\bullet}$ Mo 3000 $^{116}_{O}Cd$ $^{\circ}$ T1) = 2615 kc 2500 ⁶⁰Te (34.1 Vatural abundance (%) RPP 80(2017)046301 \geq m² թյ R-EDF ²²€ 10²⁹ QRPA Jy **QRPA T** ORPA CH IBM-2 SM Mi 1 St-M.Tk 116 124130 136 Study of the g_A quenching in QRPA: PRC 96(2018)055501 g_{A} (minimal) $T_{1/2}$ reduction ⁷⁶Ge 0.59 2.7 ⁸²Se 0.56 3.0 ⁹⁶Zr 4.9 0.52 2.0 ¹⁰⁰Mo 0.70 116 Cd 0.62 3.1 ¹³⁰Te 0.35 4.9

Q₂₈=3034 keV

Selection of ultra-pure Li_2CO_3 & double crystallization

✓ Multiple tests of natural & ¹⁰⁰Mo-enriched bolometers Aboveground @CSNSM, underground @LSM & @LNGS

Array of four enriched detectors in EDELWEISS set-up @LSM

Eur. Phys. J. C 77 (2017) 785 & AIP Conf. Proc. 1894 (2017) 020017

¹⁰⁰Mo-enriched bolometers with an active background suppression are in a wish-list of CUPID 1t-scale $\mathbf{0}_{\nu\beta\beta}$ project aiming at utilization of existent CUORE infrastructure

III: ¹⁰⁰Mo $\beta\beta$ search by CUPID-Mo precursor

Search for \mathbf{0}_{\nu\beta\beta} decay

- **Exposure** = $42 \text{ kg} \times \text{d}$ @LSM
- **Enrichment** = 97% of ^{100}Mo
- **ROI** = 10-keV-wide @ $Q_{\beta\beta}$
- Detection **efficiency** = 69%
- BI = 0.06(3) counts/(yr kg keV) in 2.8-3.6 MeV energy interval
- $\mathbf{0}_{\mathbf{V}\beta\beta}$ **Signal** = 0 events $\Rightarrow \lim S = 2.5 \text{ counts } @90\% \text{ CL}$

 $T_{1/2} (0_V \beta \beta^{100} Mo) \ge 0.7 \times 10^{23} yr$ $\langle m_{\beta\beta} \rangle \leq$ **1.4–2.4 eV**

Investigation of 2\nu\beta\beta decay

- Selection efficiency = 95%
- **Best fit** in 1060–2680 keV **SSD** vs HSD: χ^2 /ndf = 0.89 vs 0.94 **Signal / Background** = 10

> Protocol of enriched crystals batch production

Protocol of a detector array with high performance & radiopurity

IV: CUPID-Mo experiment

Phase I: Twenty Li₂¹⁰⁰MoO₄ scintillating bolometers in EDELWEISS set-up @LSM (France)

CUPID-Mo

PRL 117(2016)082503

Energy (keV)

Single module **Four modules** 0.2-kg Li₂¹⁰⁰MoO₄ per tower Ø44×0.17-mm Ge

CUPID-Mo goals:

- > At least 6-months-long run @LSM & expected extension @LNGS
- \succ Li₂¹⁰⁰MoO₄ bolometric technology confirmation on a larger scale
- Zero background conditions in ROI

4.18 kg crysta	als \Rightarrow 2.34 kg of ¹⁰⁰ M	lo in EDEL	NEISS set-up
	Configuration [crystal×yr]	Sensitivity @90% CL	
		<i>T</i> _{1/2} [yr]	$\langle m_{\beta\beta} \rangle$ [eV]
	(1) Phase I 20×0.5	1.3 × 10 ²⁴	0.33-0.56

	1.3 × 10 ⁻¹	0.33-0.30
2) Phase I 20 × 1.5	4.0×10^{24}	0.19–0.32
ext phase) 40×3.0	$\textbf{1.5}\times\textbf{10}^{\textbf{25}}$	0.10-0.17

AIP Conf. Proc. 1894 (2017) 020017; Proc. Moriond-2018

504

KamLAND-Zen

Systematic error ~ few % Major contribution comes from: background model selection efficiency Preliminary $2\nu\beta\beta$ spectral shape

 $T_{1/2} (2\nu\beta\beta^{100}Mo) = [6.90\pm0.06(stat)] \times 10^{18} \text{ yr}$

Our preliminary estimate of the systematics indicates that the measured ¹⁰⁰Mo $2\nu\beta\beta$ half-life could be the most precise ever achieved

Note: for other $\beta\beta$ isotopes (⁴⁸Ca, ⁸²Se, ⁹⁶Zr, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, and ²³⁸U) $T_{1/2}$ values were measured with (7-30)% uncertainty [NPA 935(2015)52]

Great potential of Li_2^{100}MoO_4 scintillating bolometers to perform high-sensitivity ¹⁰⁰Mo $0_{\nu\beta\beta}$ searches and precise $2_{\nu\beta\beta}$ studies

- **BI** ~ 10^{-3} counts/(yr kg keV) **Improved ¹⁰⁰Mo 2** $\nu\beta\beta$ investigation
- and $\mathbf{0}_{\nu\beta\beta}$ half-life limit

Prospects of CUPID-Mo to be among the most sensitive 0 $\nu\beta\beta$ experiments and to validate the technology for the next-generation studies

¹³⁶Xe