First Operation of a Ton Scale Dual Phase Liquid Argon TPC

Laura Zambelli (LAPP, CNRS/IN2P3, USMB)

For the WA105 Collaboration - Neutrino 2018 conference

3D Imaging of a Ton Scale Dual Phase Liquid Argon TPC

- **Drifting** \([0.5 \text{ kV/cm}]\) towards the anode, **extracted** \([2 \text{ kV/cm}]\) in the gas layer, **amplified** \([33 \text{ kV/cm}]\) in the LEMs and **induced** \([5 \text{ kV/cm}]\) to a 2D collection readout with equal charge sharing.

Advantages w.r.t single phase design: accessible electronics, better granularity, very large S/N ratio, longer drift, fewer channels.

Challenges: stability of the LAr level, GAr thermodynamics, operation of a large area of amplification and readout plane.

Cryogenics Stability

- Cryo-camera installed for visual feedback during filling and commissioning.
- GAr temperature and pressure constantly monitored and were very stable over time.
- In the vapour phase, a gradient of \(2 \text{ K/cm}\) is observed.

Liquid argon level is measured by 8 level meters installed around the CRP.
- The position of the CRP can be adjusted to the liquid with 3 ropes.
- The LAr level can be monitored at the LEM level by measuring the LEM-Grid capacitance.

Data Collected

- Cosmic runs with two trigger configurations (external scintillator planes, PMT)
- Total of \(~500 k\) events recorded in more than 100 different HV settings

1st evidence of \(e^-\) extraction into the gas phase from light signal:

Interactions and showers:

Corresponding waveforms of the through going track:

Electronics

- **FE cards plugged inside independent and sealed chimneys**
- **17 problematic channels out of 1260**
- **Stable noise at the level of 1500 e^-**

Charge Readout Plane

- **100 µm stainless steel wires**
- **3.125 mm spacing**

A drift field of 2 kV/cm is required to minimize the slow extraction component

The effective gain is:

Pedestal RMS [ADC]:

- **~20 [nominal]**
- **~3 [best run]**

Light Signal

S1 signal provides the \(t_1\) and can serve as internal trigger

S2 signal depends on the HV settings

Very HV

- **Field cage made of 20 shaping rings of stainless steel.**
- **For a drift field of 0.5 kV/cm, a custom-made HV feedthrough polarizes the cathode at \(-56kV\); it was successfully tested at \(-300 kV\).**

The Dual Phase Technology

3D imaging from electrons drifting \([0.5 \text{ kV/cm}]\) towards the anode, **extracted** \([2 \text{ kV/cm}]\) in the gas layer, **amplified** \([33 \text{ kV/cm}]\) in the LEMs and **induced** \([5 \text{ kV/cm}]\) to a 2D collection readout with equal charge sharing.

Very HV

- **Field cage made of 20 shaping rings of stainless steel.**
- **For a drift field of 0.5 kV/cm, a custom-made HV feedthrough polarizes the cathode at \(-56kV\); it was successfully tested at \(-300 kV\).**

Very HV

- **Field cage made of 20 shaping rings of stainless steel.**
- **For a drift field of 0.5 kV/cm, a custom-made HV feedthrough polarizes the cathode at \(-56kV\); it was successfully tested at \(-300 kV\).**