Abstract

NuWro Monte Carlo event generator is described and then used in investigation of MEC events.

NuWro

NuWro is a Monte Carlo neutrino event generator under development at Wroclaw University since ∼ 2006 [1].

- Open source code, repository at https://github.com/NuWro/nuwro
- Covers energy range from ∼ 100 MeV to TeV region.
- Flux and detector interfaces allow for a use in neutrino experiments.

NuWro physics models

The basic picture is that of impulse approximation. Neutrino-nucleus scattering is a two-step process. Primary interaction on quasifree nucleons is followed by hadron rescatterings.

- **QEL:** ν̄μ n → l− p
- **RES:** W < 1.6 GeV; mostly single pion production via ν̄μ N → l− Δ N′, Δ → π N″
- **DIS:** W > 1.6 GeV
- **COH:** coherent pion production

NuWro FSI model

How pion cascade may change final state particles.

- A critical ingredient to compare to experimental data.
- NuWro includes FSI effects for pions and nucleons.
 - a) Pion rescatterings (and absorption) described by Oset et al model [2]
 - b) Nucleon rescatterings described by Pandharipande-Pieper model [3]. Nucleon-nucleon correlations effects will be included.

MEC mechanism

In case of neutrino nucleus scattering interaction can occur on nucleon-nucleon pairs via two body current mechanism. Ab initio computations for electron scattering show that the mechanism must be include to describe quasielastic peak region.

NuWro MEC model

Contribution to lepton inclusive cross section taken from Valencia model [4] Hadronic part described by "phase space" model [5].

A search for MEC events

MEC events are supposed to be a significant fraction of CCν̄μ events with a signal defined as no pions and arbitrary number of nucleons in the final state. Example: MINERvA experiment results [6].

One may try to learn about MEC contribution from CCν̄μ data from MINERvA, T2K, ν̄μ, and Pν̄, measurements, but there is a lot of ambiguity.

Proton observables

It seems necessary to study proton observables. Example: T2K measurement of CCν̄μ without a proton in an acceptance region [7].

In this data there is a small contribution from MEC and it can be used to constrain nucleon FSI effects.

Final remarks

- A lot of interest in MEC contribution to overall cross section
- Theoretical models predictions are quite different.
- There is a lot of new neutrino scattering data, also with proton detection, one must use MC generator to analyze results and learn about the MEC contribution.

References