Event selection for the measurement of the charged current muon antineutrino single pion production cross section in the T2K near detector

Grzegorz Zarnecki on behalf of the T2K collaboration
National Centre for Nuclear Research, Warsaw, Poland
Grzegorz.Zarnecki@ncbj.gov.pl

Introduction

- T2K [1] is a long-baseline neutrino oscillation experiment based in Japan.
- Beam source and near detectors (off-axis ND280 and on-axis INGRID) in J-PARC, Tokai.
- Off-axis far detector is Super-Kamiokande, 295 km away.

Characteristics and selection of ν_μ, CC$1\pi^-$ topology

- Defined as a topology with one μ^+ and one π^- in the final state, with no other types of pions: $\nu_\mu + N \rightarrow \mu^+ + \pi^- + X$.
- ND280 magnetic field enables selection of π^- and μ^+ candidate.
- Selection: one track containing a segment in TPC and starting in FGD1 fiducial volume reconstructed as a π^- and the other track with a segment in TPC reconstructed as a π^- (Fig. 2: left).
- Also the isolated track in FGD1 with π-like energy loss dE/dx is considered to be a signature of π^- (Fig. 2: right).
- In both cases, no reconstructed μ^+, π^0 nor Michel electrons.

First studies on purity improvement

- ν_μ beam contaminated with ν_τ.
- One of the main background topologies: CC$1\pi^+$: $\nu_\mu + N \rightarrow \mu^+ + \pi^- + X$.
- $\mu^+\pi^-$ (signal) and $\mu^+\pi^0$ (background) events are difficult to distinguish due to the same $\mu\pi$-like energy loss.
- Idea for the additional selection criterion: range of the μ^+ candidate.
- True μ^+ more likely to reach TPC3 chamber than π^- (Fig. 4).
- Eventual, additional cut: removal of events with multiple positive tracks originating from the FGD1 fiducial volume and μ^+ candidate not reaching TPC3. The impact on the selection presented in Table 1.

Table 1: Comparison of the selection without and with the presented cut.

<table>
<thead>
<tr>
<th>topology or type of interaction</th>
<th>fraction</th>
<th>number of eventsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC$1\pi^-$</td>
<td>1.2%</td>
<td>311</td>
</tr>
<tr>
<td>CC$1\pi^+$</td>
<td>52.2%</td>
<td>75</td>
</tr>
<tr>
<td>CCother</td>
<td>12.6%</td>
<td>145</td>
</tr>
<tr>
<td>BKG CC ν_μ</td>
<td>24.3%</td>
<td>36</td>
</tr>
<tr>
<td>BKG NC</td>
<td>6.1%</td>
<td>2</td>
</tr>
<tr>
<td>BKG other</td>
<td>0.3%</td>
<td>20</td>
</tr>
<tr>
<td>out of FV</td>
<td>3.4%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Composition of the CC$1\pi^-$ sample obtained with preliminary selection.

aNumber of events scaled to the data POT: 6.7×10^{20}.

Plans

- CC$1\pi^-$ preliminary selection is 52% pure.
- Other ideas for selection improvements are under studies. Some of the considered observables are: range of π^- candidate track, vertex activity, number of tracks in FGD1.
- Selection will be optimized based on known detector systematics and evaluation of the additional uncertainty related to TPC-FGD-TPC matching.
- Analysis will incorporate control regions (sidebands) after selection is finalized.

References

doi:10.1016/j.nima.2011.06.067