A 185 kg NaI[Tl] Detector for Observing the Charged-Current Neutrino Interaction on ^{127}I

$^{127}\text{I} + \nu_{e} \rightarrow ^{127}\text{Xe} + e^{-}$

- ^{127}I charged-current reaction proposed by W. Haxton$^{[1]}$ for solar, supernova neutrino detection
- Additionally, measurement used to test nuclear models, measure g_A quenching with neutrinos
 - Very few neutrino-nuclear cross sections measured at these energies!
- Radiochemical measurement$^{[2]}$ made at LAMPF in 1990s, but:
 - No energy dependence of cross section
 - Exclusive measurement (no ^{127}Xe particle emission)
- Inclusive cross section calculated by Mintz & Pourkaviani$^{[3]}$

The NaIνE Detector

• Twenty-four 7.7kg NaI[Tl] scintillators deployed to the SNS in 2016

• Goal: make a preliminary measurement of the charged-current reaction on 127I, test backgrounds for a CEνNS search with 23Na
 • Using dual-gain base with range 3 keV-60 MeV

• Main background for CC is cosmic muons
 • Vetos deployed in 2017, big improvement
 • Also investigating tracking algorithms

• Beam resumed in May (at higher power)
 • Work on tonne-scale detector continues