KM3NeT/Super-ORCA: Measuring the leptonic CP-phase with atmospheric neutrinos - a feasibility study

Jannik Hofestädtt, T. Eberl, M. Bruchner for the KM3NeT Collaboration

Neutrino2018, Heidelberg, June, 2018
Measuring δ_{CP} with atmospheric neutrinos

- Oscillation pattern of atmospheric neutrinos depends on δ_{CP}
- δ_{CP} sensitivity: $E_\nu < 3\text{GeV}$
- Good ν_e / ν_μ separation crucial

\rightarrow δ_{CP} sensitivity study for possible future multi-Mton Cherenkov detector

- KM3NeT/Super-ORCA: ~10x denser version of ORCA (for comparison: still ~100x smaller instrumentation density than SK)
 \rightarrow ~100 detected photons per GeV
 \rightarrow e/µ separation via angular light profile: 95% purity @ $E_\nu = 1\text{GeV}$
δ_{CP} sensitivity

- Method: χ^2 minimisation assuming a test δ_{CP}^{test} value and simultaneously fitting neutrino oscillation and nuisance parameters

![Graph showing sensitivity to δ_{CP}]

- Complementarity to long-baseline experiments:
 beam / atm. neutrinos more precise at $\delta_{CP} = 0 \& \pi / 0.5\pi \& 1.5\pi$

Jannik Hofestädt, KM3NeT/Super-ORCA, Neutrino'18, Heidelberg, June 2018