First Deep Learning based Event Reconstruction for Low-Energy Excess Searches with MicroBooNE

A. Hourlier (MIT), V. Genty (Columbia), R. An (IIT)
on behalf of the MicroBooNE Collaboration

hourlier@mit.edu

- Investigate low energy ν_e excess seen by MiniBooNE in the [200-600] MeV range.
- Focus on 1lepton-1proton final states, dominant at low energy.
- Use ν_μ sample as normalization of intrinsic ν_e background.

- Deep Learning and Computer Vision tools to identify and reconstruct interesting events:
 - LArTPC read-outs are "pictures" of the interactions: signal of each wire in time,
 - Semantic Segmentation Network identifies tracks and EM showers at the pixel level,
 - Computer Vision algorithm identifies vertex as kinks in tracks for ν_μ candidates,
 - Spatial resolution for vertex finding ~0.3 cm is equivalent to 1 wire spacing.
Main challenge of track reconstruction: un-responsive wires.
- Tracks grow by stochastic search in 3D space around the current end point
 - small region to search => low resource consumption,
 - 3D consistency across planes => robustness to un-responsive wires and crossing cosmic tracks.
- 4% energy resolution on 1μ1p events.