Neutrinos are the key to solve the century-old question about the origin of cosmic rays.

- Cosmic-rays are charged particles produced in the Universe with energies 10 million times larger than we can archive at the Large Hadron Collider at CERN.
- Cosmic-rays are deflected by magnetic fields → sources are unknown.
- Neutrinos are produced in interactions of cosmic-rays with ambient radiation fields or matter.
- Various types of optical counterparts to neutrino sources are expected (e.g. SN Ic, Kilonovae, SN IIn, TDE, GRB).

Searching for Optical Counterparts to High-Energy Neutrino Sources with the Zwicky Transient Facility

The Mystery of the Cosmic Particles

Real Time Neutrino - Transient Trigger

- Ice as natural detector medium
 - 1km² of transparent ice instrumented with light sensors
 - Neutrino direction and energy are measured

- Alert Management, Photometry and Evaluation of Light curves: AMPEL
 - Novel real time alert management and trigger software

- Zwicky Transient Facility
 - High cadence and very large field-of-view → ZTF can scan the entire northern sky every night

Primary transient selection

- Short transients (GRB-like)
 - More than 2 detections in < 12h
 - Falling light curve
 - Realtime maximum likelihood calculation of test statistic

- Medium length transients (SN Ic, Kilonova)
 - Time window of 2 weeks
 - More than 3 optical detections

- Long transients (SN IIn, SLSN, TDE)
 - Time window of 8 weeks
 - More than 5 optical detections

Realtime Search for Counterparts

- Background discrimination:
 - Trained neural network estimates redshift of host galaxy
 - Neutrino counterparts (signal) show generally smaller redshifts → Enables rejection of transients showing no significant neutrino emission (background)

- Spectroscopic follow up
 - Real time maximum likelihood calculation
 - Statistical excess between neutrino and optical counterpart will trigger spectroscopic follow up
 - Optimised on false positive rate of < 100 per year.

- Goal
 - Target of opportunity program for most promising neutrinos
 - Statistical correlation between all Ice Cube neutrinos and full catalogue of ZTF optical transients

References