A Ton-Scale NaI Detector for Coherent Neutrino-Nucleus Scattering Studies
D.M. Markoff for the COHERENT Collaboration
North Carolina Central University and Triangle Universities Nuclear Laboratory

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) Experiment

- A neutrino elastically scatters off a nucleus via exchange of a Z, and the nucleus recoils as a whole
- Coherent process up to $E_n \sim 50$ MeV
- Enhancement of elastic scattering cross section.
- Standard model prediction - N^2 cross section dependence
- Observable = nuclear recoil < 50 keV energy deposited

Design and Development

- NaI[Tl] paddle detectors being reused from Advanced Spectroscopic Portal Monitoring system
 - test detectors and characterize response
 - U Washington characterization and test procedure
- Detector location constraints (location in basement hallway of Spallation Neutron Source at ORNL)
 - maximum size 40'' (101 cm) from wall including shielding
- Shielding requirements
 - neutron shielding
 - γ-ray shielding (source from nearby pipes)
 - probably not need muon veto - inner detectors well shielded
- Low-energy recoil with high-efficiency requires high-gain refurbishment of bases for high-gain signals

Simulations

- MCNP and GEANT4 based simulations underway for optimizing shielding
- Use 185 kg NaI Detector to compare model to data

Proposed Design

- Propose modular design
- Initially 2 to 5 tons of NaI (less than 800 detectors)
- Stacks of \sim180 detectors
 - for \sim1.35 T per stack
- Pb (grey) and water (blue) shielding

References