1. Introduction

- Standard Solar Model (SSM) [1].
 - The SSM has been constructed by inputting several observation results assuming:
 (1) Spherically symmetric,
 (2) Hydrostatic equilibrium with no macroscopic motion except for the convection,
 (3) No mass loss, no mass accretion, no rotation and no magnetic field.
 - The model well predicts the production and energy spectrum of solar neutrinos.
- Periodic variations in the Sun.
 - 11-years periodic change of the sunspot at the surface. This leads to the change of the magnetic field.
 → Some mechanisms propose conversions of neutrino ($\nu_e \rightarrow \nu_R$) if neutrino has a large magnetic moment [3-5].
 - Solar oscillations around its equilibrium state because of the Sun’s restoring force [6].
 → Acoustic oscillation (p-mode) due to compressibility [7-9] or gravity oscillation (g-mode) due to buoyancy [10].

2. G-mode oscillation and neutrino

- Introduction about g-mode oscillations [11, 12].
 - G-mode oscillations are described as spherical harmonics function.
 - They may affect both electron density and temperature in the core of the Sun.
- These modes have not been detected because their amplitudes are low at the surface.
- Typical frequencies are about a few hours (~100-300 μHz) [11].
- 8B neutrino production rate.
 - G-modes are trapped under the convective zone, where 8B solar neutrino is produced.
 - Production rate depends on temperature. It is proportional to T^{24-25} ($T = 10^6 K$) [13].
 → Its production rate is amplified by a factor of 170 [14].
 → It may affect the propagation of solar ν, MSW effect [15, 16], thus survival probability of ν_e [12].

3. Super-Kamiokande & Methods

- Super-Kamiokande [17] and solar neutrino observation [18-21].
 - Cherenkov light produced via $\nu - e$ elastic scattering.
 → Recoil electrons preserve the direction of incident neutrinos.
- Two methods to search for periodical signals.
 - Generalized Lomb-Scargle method (Binned analysis)
 Search for periodic signals in uncontinuous data set [22-24].
 - ν: flux of i-th bin
 - t: time of i-th bin
 - ω: angular frequency
 - ϕ: offset
 - 5-days bin (8ν flux [$10^6 \text{cm}^2 \text{sec}^{-1}$])

 - Rayleigh power method (Unbinned analysis)
 Power spectrum considering timing of observed events [26, 27].
 - N: number of total event
 - t: time of i-th event
 - v: given frequency
 - Cover 2 cycles of solar activity

4. Progress, Future prospect and Summary

- Progress and future prospects
 - Dead-time due to calibrations affects the sensitivity in Rayleigh power method.
 - We have started to develop a randomly timed MC simulation considering operation-time/dead-time of SK.
 - We will open the data soon after the MC production and compare with the former results from SNO collaboration [28-30].
- Summary
 - The SSM has been constructed for 50 years. However, the Sun oscillates around its equilibrium such as p-mode or g-mode.
 - G-mode oscillation may amplify the solar ν production rate by a factor of 170 because of fluctuation of electron density.
 - SK has a chance to search for g-mode oscillations by using its timing information of the observed solar ν.