Data-driven Techniques for ν_e Signal and Background Predictions in NOνA

Shiqi Yu,¹ Tomas Nosek²

¹Argonne National Laboratory / Illinois Institute of Technology
²Charles University, Institute of Particle and Nuclear Physics

Heidelberg, 4–9 June, 2018
Background Decomposition

Neutrino Mode

Beam ν_e constrain

Decomposition Result

Michel

Constrain ν_μ by inspecting Michels

$\pi^+ \rightarrow \nu_\mu + \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

Anti-neutrino Mode

Proportional Decomposition

- All components sized proportionally by any Data/MC discrepancy in each analysis bin
Signal Prediction

- Functionally identical detectors
- ‘Extrapolate’ ND to predict FD
- ND ν_μ CC \rightarrow FD ν_e
- ND ν_e CC \rightarrow FD bkg
- Reducing impact of systematic uncertainties, flux and cross-sections

\[
\text{FD Bkg. Prediction} = \frac{\text{ND Decomposed}}{\text{ND Uncorr. MC}} \times \text{FD MC}
\]

\[
\text{FD Sig. Prediction} = \frac{\text{FD MC}}{\text{ND MC}} \times \text{ND } \nu_\mu \text{ data}
\]