Novel measurements of anomalous triple gauge couplings for the LHC

Elena Venturini

SISSA and INFN Trieste

23 May 2018

PLANCK2018

1707.08060 with A.Azatov, J.Elias-Miro, Y.Reyimuaji In progress with G.Panico, F.Riva, A.Wulzer, A.Azatov, D.Barducci

- \bullet Search for new resonances \rightarrow High energy
- \bullet Precision tests of SM \rightarrow High luminosity

EFT: Parametrization at $E < \Lambda$ of NP with $M \ge \Lambda$ ($E \sim$ EW scale, $\Lambda \sim$ BSM scale)

EFT E<A SM

Λ

• Integration out of heavy fields (Assuming lepton number conservation):

$$\mathcal{L}^{BSM}
ightarrow \mathcal{L}^{SM}_{EFT} = \mathcal{L}^{SM} + \sum_{n=6}^{\infty} \sum_{i} \frac{c_{i}^{n}}{\Lambda^{n-4}} \mathcal{O}_{i}^{n}$$

Observables:

$$\sigma_{EFT} = \sigma^{SM} + \sum_{i} \frac{\left(c_{i} \sigma_{i}^{6\times SM} + h.c.\right)}{\Lambda^{2}} + \sum_{i,j} \frac{c_{i} c_{j}^{*}}{\Lambda^{4}} \sigma_{ij}^{6\times 6} + \\ + \sum_{i} \frac{\left(c_{i} \sigma_{i}^{8\times SM} + h.c.\right)}{\Lambda^{4}} + \mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)$$

Naively $\frac{\sigma_{i}^{6\times SM}}{\Lambda^{2} \sigma^{SM}} \sim \frac{E^{2}}{\Lambda^{2}} \frac{\sigma_{ij}^{6\times 6}}{\Lambda^{4} \sigma^{SM}} \sim \frac{E^{4}}{\Lambda^{4}}$

Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

Energy region with EFT validity and BSM sensitivity

$$rac{\mathsf{E}^2}{\mathsf{\Lambda}^2} \gg \mathbf{0} \wedge rac{\mathsf{E}^2}{\mathsf{\Lambda}^2} \gg rac{\mathsf{E}^4}{\mathsf{\Lambda}^4}$$

Focus : D=6 - SM interference

- Naively LARGER for ENERGIES $E \ll \Lambda$ (EFT validity)
- Possible enlargement of the E-region with D=6 TRUNCATION validity
- Information about the SIGN of the Wilson coefficients

NP Sensitivity of Diboson (VV) production \rightarrow Focus on a(nomalous)TGCs

$$\mathcal{L}_{TGC}^{SM} = ig\left[\left(W^{+,\mu\nu}W_{\mu}^{-} + W^{-,\mu\nu}W_{\mu}^{+}\right)W_{\nu}^{3} + W^{3,\mu\nu}W_{\mu}^{+}W_{\nu}^{-}\right], \quad W_{\mu}^{3} = c_{\theta}Z_{\mu} + s_{\theta}A_{\mu}$$

 $\Delta \mathcal{L}_{TGC}$ (CP-even):

•
$$ig(W^{+,\mu\nu}W^{-}_{\mu} + W^{-,\mu\nu}W^{+}_{\mu})(\delta g_{1,z}c_{\theta}Z_{\nu} + \delta g_{1,\gamma}s_{\theta}A_{\nu}) +$$

 $+ig(\delta\kappa_{z}c_{\theta}Z^{\mu\nu} + \delta\kappa_{\gamma}s_{\theta}A^{\mu\nu})W^{+}_{\mu}W^{-}_{\nu} +$
 $+\lambda_{z}c_{\theta}\frac{ig}{m^{2}_{W}}W^{+,\mu\nu}W^{-}_{\nu\rho}Z^{\rho}_{\mu} + \lambda_{\gamma}s_{\theta}\frac{ig}{m^{2}_{W}}W^{+,\mu\nu}W^{-}_{\nu\rho}A^{\rho}_{\mu}$

 $U(1)_{\gamma}$ invariance $\Rightarrow \delta \mathbf{g}_{1,\gamma} = \mathbf{0}$

LEP-II BOUNDS
$$\lambda_z \in [-0.059; 0.017] \quad \delta g_{1,z} \in [-0.054; 0.021] \quad \delta \kappa_z \in [-0.074; 0.051]$$

通 と く ヨ と く ヨ と

NP Sensitivity of Diboson (VV) production \rightarrow Focus on a(nomalous)TGCs

$$\mathcal{L}_{TGC}^{SM} = ig\left[\left(W^{+,\mu\nu}W_{\mu}^{-} + W^{-,\mu\nu}W_{\mu}^{+}\right)W_{\nu}^{3} + W^{3,\mu\nu}W_{\mu}^{+}W_{\nu}^{-}\right], \quad W_{\mu}^{3} = c_{\theta}Z_{\mu} + s_{\theta}A_{\mu}$$

 $\Delta \mathcal{L}_{TGC} \mid_{D=6} (CP-even)$ [For example SILH basis]:

• $\mathbf{ig}(\mathbf{D}_{\mu}\mathbf{H})^{\dagger}\hat{\mathbf{W}}^{\mu\nu}\mathbf{D}_{\nu}\mathbf{H} = \mathcal{O}_{HW}$ $\mathbf{ig}'(\mathbf{D}_{\mu}\mathbf{H})^{\dagger}\mathbf{B}^{\mu\nu}\mathbf{D}_{\nu}\mathbf{H} = \mathcal{O}_{HB} \rightarrow_{\mathsf{EW}-\mathsf{SSB}}$ $\rightarrow ig(W^{+,\mu\nu}W^{-}_{\mu} + W^{-,\mu\nu}W^{+}_{\mu})(\delta g_{1,z}c_{\theta}Z_{\nu} + \delta g_{1,\gamma}s_{\theta}A_{\nu}) +$ $+ig(\delta \kappa_{z}c_{\theta}Z^{\mu\nu} + \delta \kappa_{\gamma}s_{\theta}A^{\mu\nu})W^{+}_{\mu}W^{-}_{\nu}$

 $U(1)_{\gamma} \text{ invariance } \Rightarrow \delta \mathbf{g}_{1,\gamma} = \mathbf{0}, \qquad \mathbf{D=6} \text{ EFT: } \delta \kappa_{\mathbf{z}} = \delta \mathbf{g}_{1,\mathbf{z}} - \frac{\mathbf{s}_{\theta}^{2}}{\mathbf{c}_{\theta}^{2}} \delta \kappa_{\gamma}$

$$\delta g_{1,z} = rac{m_Z^2}{\Lambda^2} c_{HW} , \quad \delta \kappa_Z = rac{m_W^2}{\Lambda^2} \left(c_{HW} - \tan^2 \theta c_{HB}
ight)$$

NP Sensitivity of Diboson (VV) production \rightarrow Focus on a(nomalous)TGC

$$\mathcal{L}_{TGC}^{SM} = ig\left[\left(W^{+,\mu\nu}W_{\mu}^{-} + W^{-,\mu\nu}W_{\mu}^{+}\right)W_{\nu}^{3} + W^{3,\mu\nu}W_{\mu}^{+}W_{\nu}^{-}\right], \quad W_{\mu}^{3} = c_{\theta}Z_{\mu} + s_{\theta}A_{\mu}$$

 $\Delta \mathcal{L}_{TGC} \mid_{D=6}$ (CP-even) [For example SILH basis]:

$$\ \ \, \underbrace{ \ \ \, }_{3!} \epsilon^{\mathbf{abc}} \mathbf{W}^{\mathbf{a},\mu\nu} \mathbf{W}^{\mathbf{b}}_{\nu\rho} \mathbf{W}^{\mathbf{c},\rho}_{\mu} = \mathcal{O}_{3W} \rightarrow \mathbf{New} \ \mathbf{TGC}: \ \ \, \lambda_z \frac{ig}{m_W^2} W^{+,\mu\nu} W^{-}_{\nu\rho} W^{3,\rho}_{\mu}$$

D=6 EFT :
$$\lambda_z = \lambda_\gamma$$
 $\lambda_Z = \frac{m_W^2}{\Lambda^2} c_{3W}$

3 aTGC: $\delta g_{1,z}$, $\delta \kappa_{\gamma}$, λ_z LEP-I bounds \Rightarrow 3 independent parameters in VV production: 3 aTGCs Using Goldstone Equivalence formalism $\mathbf{H} \supset \mathbf{V}_{L}$ (V = W, Z)

• SM: tr $W_{\mu\nu}W^{\mu\nu} \supset \partial V_T V_T V_T$, $(D_{\mu}H)^{\dagger}D^{\mu}H \supset \partial V_L V_T V_L + vV_T V_T V_L$ Leading energy scaling of SM helicity amplitudes

$$\mathcal{M}\left(q\bar{q} \rightarrow V_{\mathcal{T}}W_{\mathcal{T}}^{+}, V_{L}W_{L}^{+}
ight) \sim E^{0}, \quad \mathcal{M}\left(q\bar{q} \rightarrow V_{\mathcal{T}}W_{L}^{+}/V_{L}W_{\mathcal{T}}^{+}
ight) \sim rac{v}{F}$$

D=6 EFT

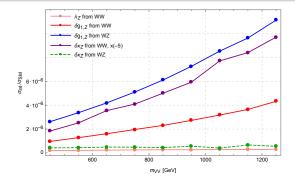
$$\mathcal{O}_{HB} = ig'(D_{\mu}H)^{\dagger}B^{\mu\nu}D_{\nu}H \supset \partial W_{L}\partial Z_{T}\partial W_{L} + vW_{T}\partial Z_{T}\partial W_{L} + v^{2}W_{T}\partial Z_{T}W_{T} + \dots$$
$$\mathcal{O}_{HW} = ig(D_{\mu}H)^{\dagger}\hat{W}^{\mu\nu}D_{\nu}H \supset \partial V_{L}\partial V_{T}\partial V_{L} + vV_{T}\partial V_{T}\partial V_{L} + v^{2}V_{T}\partial V_{T}V_{T} + \dots$$
$$\mathcal{O}_{3W} = \frac{g}{3!}\epsilon^{abc}W^{a,\mu\nu}W^{b}_{\nu\rho}W^{c,\rho}_{\mu} \supset \partial V_{T}\partial V_{T}\partial V_{T} + \dots$$

Leading energy scaling of helicity amplitudes with D=6 operators:

$$\begin{split} \mathcal{M} \left(q \bar{q} \rightarrow W_L^- W_L^+ \right) &\sim E^2 / \Lambda^2 \, c_{HB} + E^2 / \Lambda^2 \, c_{HW} \sim E^2 / m_W^2 \, \delta g_{1,Z} + E^2 / m_W^2 \, \delta \kappa_Z \\ \mathcal{M} \left(q \bar{q} \rightarrow Z_L W_L^+ \right) &\sim E^2 / \Lambda^2 \, c_{HW} = E^2 / m_Z^2 \, \delta g_{1,Z} \\ \mathcal{M} \left(q \bar{q} \rightarrow V_T W_T^+ \right) &\sim E^2 / \Lambda^2 \, c_{3W} = E^2 / m_W^2 \, \lambda_Z \end{split}$$

Naively expected E^2 enhancement with respect to SM

Interference and interference suppression



- $\delta \mathbf{g}_{1,z}$: $\mathbf{SM} \times \mathcal{O}_{HW} \sim E^2$ in $q\bar{q} \rightarrow V_L V_L$
- $\delta \kappa_z$: **SM** × $\mathcal{O}_{HB} \sim E^2$ in $q\bar{q} \rightarrow W_L W_L$ $\sim E^0$ in $q\bar{q} \rightarrow W_{L,T} Z_T$ (Interference suppression)
- λ_z : SM × O_{3W}: more information needed
 - **SM**: $q\bar{q} \rightarrow V_{T\pm}V_{T\mp}$ (Helicity selection rule; Azatov, Contino, Machado, Riva [arXiv:1607.05236])
 - \mathcal{O}_{3W} : $q\bar{q} \rightarrow V_{T\pm}V_{T\pm}$ $(O_{3W} \propto w_{\alpha}^{\ \beta}w_{\beta}^{\ \gamma}w_{\gamma}^{\ \alpha} + \bar{w}_{\dot{\alpha}}^{\ \beta}\bar{w}_{\dot{\beta}}^{\ \dot{\gamma}}\bar{w}_{\dot{\gamma}}^{\dot{\alpha}}) \Rightarrow$ $\Rightarrow SM \times \mathcal{O}_{3W} \sim E^{0} \sim m_{V}^{2} \rightarrow \text{Interference suppression}$

Goal:

Overcome suppression of $SM \times \mathcal{O}_{3W}$ interference

$$\sigma(qar{q}
ightarrow V_T V_T) \sim rac{g_{
m SM}^4}{E^2} igg[1 + c_{3W} rac{m_V^2}{\Lambda^2} + c_{3W}^2 rac{E^4}{\Lambda^4} igg]$$

• Relaxation of the condition for dimension 6 truncation validity

$$\max\left(c_{3W}\frac{m_V^2}{\Lambda^2}, c_{3W}^2\frac{E^4}{\Lambda^4}\right) > \max\left(c_8\frac{E^4}{\Lambda^4}, c_8^2\frac{E^8}{\Lambda^8}\right) \rightarrow \\ \rightarrow \max\left(c_{3W}\frac{E^2}{\Lambda^2}, c_{3W}^2\frac{E^4}{\Lambda^4}\right) > \max\left(c_8\frac{E^4}{\Lambda^4}, c_8^2\frac{E^8}{\Lambda^8}\right)$$

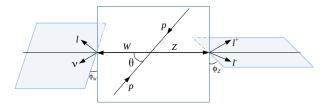
Sensitivity to the sign of c_{3W}

Not $2 \rightarrow 2$ BUT $2 \rightarrow 2 \rightarrow 4$

Not helicity selection rule BUT NOT INTERFERENCE:

non trivial distribution in the azimuthal angles of final fermions

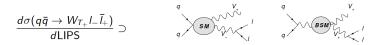
Duncan, Kane, Repko 85



Interference resurrection: 1st method

• $BSM_{TT} \times SM_{TT}$ interference

 $2 \rightarrow 3: q\bar{q} \rightarrow W_{T_+}Z_i$ and $Z \rightarrow l^+l^-$, $i = \pm$ (Neglecting $V_T V_L \sim \frac{v}{E}$ in SM)



$$\supset \frac{\pi}{2s} \frac{\delta(s - m_Z^2)}{\Gamma_Z m_Z} \mathcal{M}_{q\bar{q} \to W_{T_+} Z_{T_-}}^{SM} \left(\mathcal{M}_{q\bar{q} \to W_{T_+} Z_{T_+}}^{BSM} \right)^* \mathcal{M}_{Z_{T_-} \to l_- \bar{l}_+} \mathcal{M}_{Z_{T_+} \to l_- \bar{l}_+}^*$$

$$\rightarrow \frac{d\sigma_{\text{int}}(q\bar{q} \to W_+ l_- \bar{l}_+)}{d\phi_Z} \propto \frac{E^2}{\Lambda^2} \cos(2\phi_Z)$$
 Naively expected energy growth

 ϕ_Z : Azimuthal angle of LH (or RH) lepton from Z w.r.t. $\vec{p_z}$

Modulated and non zero interference; zero after integration $(2 \rightarrow 2)$

BUT

- In $Z \rightarrow l^+ l^-$ the helicity of l^- (or l^+) is not fixed and observed
- Observable: φ^c_Z for *I*[−] (or *I*⁺) with fixed charge → φ^c_Z = φ_Z ∨ φ^c_Z = φ_Z + π
 Ambiguity, BUT cos(2φ_Z) modulation is not affected

Interference resurrection: 1st method

• **BSM**_{TT} × **SM**_{TT} interference

$$qar{q}
ightarrow W_i Z_j$$
 and $W
ightarrow
u I \; Z
ightarrow I^+ I^-$, $i,j=\pm$

$$rac{d\sigma_{
m int}(qar{q}
ightarrow WZ
ightarrow 4\psi)}{d\phi_Z\,d\phi_W}\propto rac{E^2}{\Lambda^2}\left(\cos(2\phi_Z)+\cos(2\phi_W)
ight)$$

Modulated non zero $\sim E^2$ interference even integrating over ϕ_Z or ϕ_W BUT Ambiguity also on ϕ_W

- In $W \to \nu l \ \vec{p}_{\nu}$ is not observed
- \vec{p}_{ν} and ϕ_W reconstruction $\rightarrow \phi_W^{rec} = \phi_W \lor \phi_W^{rec} = \pi \phi_W^{-1}$

Ambiguity, BUT $\cos(2\phi_W)$ modulation is not affected

• $BSM_{TT} \times SM_{LL}$ interference

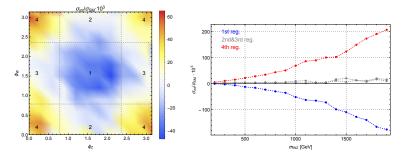
$$rac{d\sigma_{
m int}(qar{q}
ightarrow WZ
ightarrow 4\psi)}{d\phi_Z\,d\phi_W}\propto rac{E^2}{\Lambda^2}\cos(\phi_Z+\phi_W)$$

Hard to be observed due to ϕ_Z helicity-charge (or ϕ_W) ambiguity

$$cos(\phi_Z + \phi_W) \sim g_L^2 cos(\phi_Z^c + \phi_W) + g_R^2 cos(\phi_Z^c + \pi + \phi_W) = = (g_L^2 - g_R^2) cos(\phi_Z^c + \phi_W) \sim 0 \quad [g_L \sim -0.28, g_R \sim -0.22]$$

¹Panico, Riva, Wulzer [arXiv: 1708.07823]

Novel measurements of anomalous triple gauge couplings for the LHC



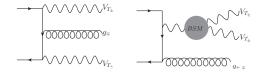
Left: Differential interference cross section over SM one as a function the azimuthal angles ϕ_W and ϕ_Z (In $[0, \pi]$) for the events with W - Z invariant mass $m_{WZ} \in [700, 800] \text{ GeV}$.

Right: same quantity as a function of the m_{WZ} binned in 2 bins of ϕ_Z and 2 bins of ϕ_W (cos(2ϕ) $\ge 0, < 0$).

Interference resurrection: : 2nd method

Not $2 \rightarrow 2$ LO BUT NLO Virtual gluon exchange effects with $\frac{\alpha_S}{4\pi}$ suppression: Focus on $2 \rightarrow 3$ with real gluon emission

Dixon, Shadmi 94

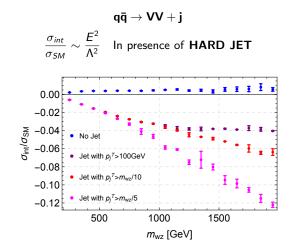


• SM: $q\bar{q} o V_{\pm}V_{\mp} \implies q\bar{q} o V_{\pm}V_{\pm}g_{\mp}$: qualitative change

 \bullet Total helicity ± 1 allowed both in SM and in \mathcal{O}_{3W} amplitudes

Interference in $q\bar{q} \rightarrow VVj$ is not forbidden by helicity selection rules

Interference resurrection: : 2nd method



Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

Differential distributions \Rightarrow

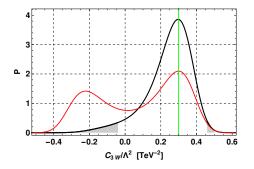
Qualitative change in interference cross section: $\sigma_{int}/\sigma_{SM} \sim E^2/\Lambda^2$

- \Rightarrow Improvement of validity of EFT approach with D=6 truncation
- \Rightarrow BOUNDS on the WC c_{3W} with possible sensitivity to the SIGN

	Lumi. 300 fb ^{-1}		Lumi. 3000 fb^{-1}		Q [TeV]
	95% CL	68% CL	95% CL	68% CL	
Excl.	[-1.06, 1.11]	[-0.59, 0.61]	[-0.44, 0.45]	[-0.23, 0.23]	
Excl., linear	[-1.50, 1.49]	[-0.76, 0.76]	[-0.48, 0.48]	[-0.24, 0.24]	1
Incl.	[-1.29, 1.27]	[-0.77, 0.76]	[-0.69, 0.67]	[-0.40, 0.39]	1
Incl., linear	[-4.27, 4.27]	[-2.17, 2.17]	[-1.37, 1.37]	[-0.70, 0.70]	
Excl.	[-0.69, 0.78]	[-0.39, 0.45]	[-0.31, 0.35]	[-0.17, 0.18]	
Excl., linear	[-1.22, 1.19]	[-0.61, 0.61]	[-0.39, 0.39]	[-0.20, 0.20]	1.5
Incl.	[-0.79, 0.85]	[-0.46, 0.52]	[-0.41, 0.47]	[-0.24, 0.29]	1.0
Incl., linear	[-3.97, 3.92]	[-2.01, 2.00]	[-1.27, 1.26]	[-0.64, 0.64]	
Excl.	[-0.47, 0.54]	[-0.27, 0.31]	[-0.22, 0.26]	[-0.12, 0.14]	
Excl., linear	[-1.03, 0.99]	[-0.52, 0.51]	[-0.33, 0.32]	[-0.17, 0.17]	2
Incl.	[-0.52, 0.57]	[-0.30, 0.34]	[-0.27, 0.31]	[-0.15, 0.19]	2
Incl., linear	[-3.55, 3.41]	[-1.79, 1.75]	[-1.12, 1.11]	[-0.57, 0.57]	

 $\lambda_Z \in [-0.0014, 0.0016]$ ([-0.0029, 0.0034])

Large improvement in the sensitivity to interference term (linear in c_{3W}/Λ^2) adding ϕ_Z and p_i^T differential distributions (D=6 EFT validity)



Posterior probability for the inclusive (red) and exclusive (black) analysis after 3 ab⁻¹ at LHC, with insertion of a signal with $c_{3W}/\Lambda^2 = 0.3 TeV^{-2}$.

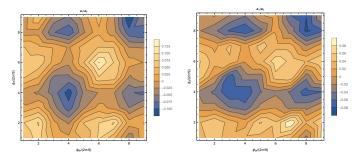
Qualitative difference in the Wilson coefficient probability density: access to the sign of c_{3W}

CP - odd
$$D = 6$$
 operator: $\tilde{\mathcal{O}}_{3W} \frac{g}{3!} \epsilon^{abc} \tilde{W}^{a,\mu\nu} W^{b}_{\nu\rho} W^{c,\rho}_{\mu}$

Interference resurrection through azimuthal differential distribution

$$rac{d\sigma_{
m int}(qar{q}
ightarrow WZ
ightarrow 4\psi)}{d\phi_Z\,d\phi_W}\propto rac{E^2}{\Lambda^2}\left(\sin(2\phi_Z)+\sin(2\phi_W)
ight)$$

Different from CP - even case \Rightarrow Discrimination of the 2 operators

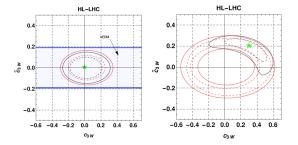


Left: $\sigma_{int}/\sigma_{SM}(\phi_W, \phi_Z)$

Right: $\sigma_{int}/\sigma_{SM}(\phi_W^{rec}, \phi_Z)$

In progress with Azatov, Barducci, Panico, Riva, Wulzer

\mathcal{O}_{3W} and $\tilde{\mathcal{O}}_{3W}$ @ 14TeV LHC after $3ab^{-1}$



95% confidence regions after 3 ab⁻¹ at LHC, without BSM signal (left) and with insertion of a signal with $c_{3W}/\Lambda^2 = 0.3 TeV^{-2}$ and $\tilde{c}_{3W}/\Lambda^2 = 0.2 TeV^{-2}$ (right)

In progress with Azatov, Barducci, Panico, Riva, Wulzer

• Differential distributions improve the sensitivity to BSM effects and the EFT safety

For \mathcal{O}_{3W} they qualitatively change the interference term and restore the naively expected energy growth:

• Validity of EFT D = 6 truncation

Sensitivity to the sign of the Wilson coefficient

• It would be interesting to analyze further these effects

- Ison other TGC operators
- At HE-LHC or in future colliders
- **(3)** In $W\gamma$ production

Thanks

Elena Venturini Novel measurements of anomalous triple gauge couplings for the LHC

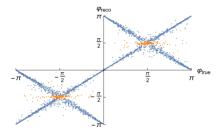
< 回 > < 注 > < 注 >

 ϕ_W Reconstruction

In the boosted regime for W

$$\cot \varphi = \frac{1}{\sin[\phi_{\nu} - \phi_l]} \left[\sinh[\eta_l - \eta_{\nu}] + \mathcal{O}\left(\frac{m_W^2}{p_{\perp l} p_{\perp \nu}}\right) \right]$$

Ambiguity:
$$\phi_W \leftrightarrow \pi - \phi_W$$



Panico, Riva, Wulzer [arXiv: 1708.07823]

SM interference with CP - even operators

$$I_{\mathbf{h}\otimes\mathbf{h}'}^{V_{1}V_{2}} = T_{\mathbf{h}\mathbf{h}'}^{V_{1}V_{2}} \big[\mathcal{A}_{\mathbf{h}}^{\scriptscriptstyle{\mathrm{SM}}} \mathcal{A}_{\mathbf{h}'}^{\scriptscriptstyle{\mathrm{BSM}_{+}}} + \mathcal{A}_{\mathbf{h}}^{\scriptscriptstyle{\mathrm{BSM}_{+}}} \mathcal{A}_{\mathbf{h}'}^{\scriptscriptstyle{\mathrm{SM}}} \big] \mathrm{cos} \left[\mathbf{\Delta}\mathbf{h} \cdot \boldsymbol{\varphi} \right]$$

SM interference with CP - odd operators

$$I_{\mathbf{h}\otimes\mathbf{h}'}^{V_{1}V_{2}} = iT_{\mathbf{h}\mathbf{h}'}^{V_{1}V_{2}} \left[\mathcal{A}_{\mathbf{h}}^{\mathrm{SM}} \mathcal{A}_{\mathbf{h}'}^{\mathrm{BSM}_{-}} - \mathcal{A}_{\mathbf{h}}^{\mathrm{BSM}_{-}} \mathcal{A}_{\mathbf{h}'}^{\mathrm{SM}} \right] \sin \left[\mathbf{\Delta}\mathbf{h} \cdot \boldsymbol{\varphi} \right],$$

Panico, Riva, Wulzer [arXiv: 1708.07823]

Non interference between A_{SM}^4 and $A_{O_{3W}}^4$ in the massless limit

Helicity of 4-point amplitudes in massless limit ($m_W \ll E$) [Only TTT in O_{3W}]

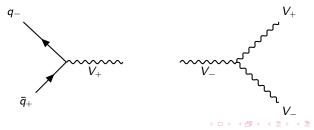
$h(A_{SM}^4) = 0$ [Tree-level, with all outgoing momenta]

From helicity of contact 3-point diagrams |h(A³_{SM})| = 1, if factorization is allowed (always the case in SM):

$$h(A_{SM}^4) = h(A_{qqV-SM}^3) + h(A_{VVV-SM}^3) = \pm 2,0$$

• Helicity selection rule in massless gauge theory: $A(V^+V^+\psi^+\psi^-) = A(V^-V^-\psi^+\psi^-) = 0 \ (\pm : h = \pm 1)$ [Also $A(V^+V^+V^+V^-) = A(V^-V^-\phi\phi) = A(V^+\psi^+\psi^+\phi) = 0$]

• s-channel of
$$A_{SM}(qar q o VV)$$

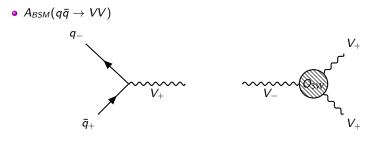


Non interference between A_{SM}^4 and $A_{O_{3W}}^4$ in the massless limit

Helicity of 4-point amplitudes in massless limit ($m_W \ll E$)

$$h(A^4_{O_{3W}}) = \pm 2$$
 [Tree-level, with all outgoing momenta]

• From helicity of contact 3-point diagrams $|h(A_{O_{3W}}^3)| = 3$ (Cheung-Shen prescription) and $|h(A_{3M}^3)| = 1$, if factorization is allowed: $h(A_{5M}^4) = h(A_{qqV-SM}^3) + h(A_{O_{3W}}^3) = \pm 2(\pm 4)$



Helicity of 4-point amplitudes in massless limit ($m_W \ll E$)

 $h(A_{O_{3W}}^4)=\pm 2$ [Tree-level, with all outgoing momenta]

- Factorization is not allowed: O_{3W} vertex cancels propagator pole
- But same results with analytical computation:

•
$$A_{BSM}(q\bar{q} \to V_+ V_-) = 0$$

• $A_{BSM}(q\bar{q} \to V_+^a V_+^b) = i \frac{gc_{3W}}{2\Lambda^2} \epsilon^{abc} T^c \frac{[p\bar{q}p_{V^a}][p\bar{q}p_{V^b}][p_{V^a}p_{V^b}]}{[p\bar{q}p_q]} \neq 0$

Non interference of SM 4-point amplitudes and BSM 4-point amplitudes with D=6 operators, in massless limit ($m_W \ll E$)

A ₄	$ h(A_4^{SM}) $	$ h(A_4^{\mathrm{BSM}}) $	
VVVV	0	4,2	
$VV\phi\phi$	0	2	
$VV\psi\psi$	0	2	
$V\psi\psi\phi$	0	2	
$\psi\psi\psi\psi\psi$	2,0	2,0	
$\psi\psi\phi\phi$	0	0	
$\phi\phi\phi\phi$	0	0	

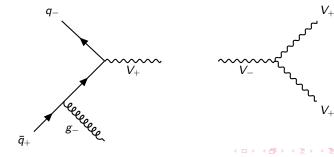
Interference between A_{SM}^5 and $A_{O_{3W}}^5$ in the massless limit

Extra hard QCD jet

[Shadmi Dixon 9312363, pioneering analysis within QCD]

$h(A^{5}_{SM})=\pm 1$ [Tree-level, with all outgoing momenta]

- From helicity of subdiagrams $|h(A_{q\bar{q}Vg-SM}^4)| = 0$ and $|h(A_{VVV-SM}^3)| = 1$, if factorization is allowed (always the case in SM): $h(A_{SM}^5) = h(A_{q\bar{q}Vg-SM}^4) + h(A_{VVV-SM}^3) = \pm 1$
- s-channel of $A_{SM}(qar q o gVV)$



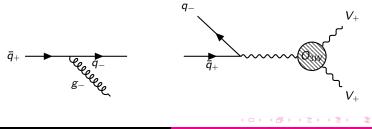
Interference between A_{SM}^5 and $A_{O_{3W}}^5$ in the massless limit

Extra hard QCD jet

 $h(A^5_{O_{3W}})=\pm 1,\pm 3$ [Tree-level, with all outgoing momenta]

• From helicity of subdiagrams $|h(A_{q\bar{q}VV-O_{3W}}^4)| = 0$ and $|h(A_{qqg-SM}^3)| = 1$, if factorization is allowed (always the case in SM): $h(A_{SM}^5) = h(A_{q\bar{q}VV-O_{3W}}^4) + h(A_{qqg-SM}^3) = \pm 1, \pm 3$

• $A_{O_{3W}}(q\bar{q} \rightarrow gVV)$: Allowed Factorization



Differential distributions \Rightarrow

Qualitative change in interference cross section: $\sigma_{int}/\sigma_{SM} \sim E^2/\Lambda^2$

 \Rightarrow Improvement of validity of EFT approach with D=6 truncation

BUT

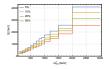
For CONSISTENT EFT analysis **INVARIANT MASS** (m_{VV}) **CUT** is necessary PROBLEMS:

- m_{WZ} and m_{WW} are not observable at LHC
- m_{WV}^T is not in one to one correspondence with m_{WV} : $m_{WV}^T < m_{WV}$

In the i^{th} bin (of m_{WV}^T and other observables)

$$\mathsf{Leakage}_i = \frac{N_i(m_{VW} > Q)}{N_i} \times 100$$

Estimates of Leakage using \mathcal{O}_{3W} -EFT with very large $c_{3W} \rightarrow$ Conservative unless there are very narrow Bright-Wigner resonances



CONSISTENT BOUNDS WITHIN PRECISION P% (5%)

Analysis with all bins having Leakage_i < P%(5%), once fixed $Q = \Lambda$:

 $m_{WV}^T < \tilde{m}_{WV}^T(\Lambda, P\%)$

Likelihood for *i*th bin:

 $p(N_{thi}|n_{obsi}) \propto N_{thi}^{n_{obsi}} e^{-N_{thi}}$, with N_{thi} in \mathcal{O}_{3W} -EFT $n_{obsi} \sim n_{SMi}$

VV production at ATLAS [1603.02151] Reproduced with MadGraph simulation at 14TeV

- Leptonic Decay: electronic and muonic channels
- **3** $W^{\pm}Z \Rightarrow$ Only one neutrino (E_T^{miss}) In particular: $W^{\pm}Z \rightarrow e^{\pm}\nu_e \mu^+ \mu^-$

Binnig in:

•
$$m_{WZ}^{T} = \sqrt{\left(\sqrt{m_{W}^{2} + (p_{W}^{T})^{2}} + \sqrt{m_{Z}^{2} + (p_{Z}^{T})^{2}}\right)^{2} - ((p_{W} + p_{Z})^{T})^{2}}$$

 $m_{WZ}^{T} : [200; 300; 400; 600; 600; 700; 800; 900; 1000; 1200; 1500; 2000] GeV$
• p_{j}^{T} of additional final jet in $ppWZj$
 $p_{j}^{T} : [0, 100] GeV; [100, 300] GeV; [300, 500] GeV; > 500 GeV$
• $\phi_{Z} : [\pi/4, 3\pi/4] \cup [5\pi/4, 7\pi/4]; [0, \pi/4] \cup [3\pi/4, 5\pi/4] \cup [7\pi/4, 2\pi]$

ATLAS kinematical cuts

• Consistency for

$$A_{WZ} = \frac{\sigma(pp \to WZ)}{\sigma(pp \to WZ)} \Big|_{\text{full phase space}} \quad (\sim 39\% \text{ at } 8\text{TeV})$$
• Consistency for bounds on c_{3W} from $pp \to W^{\pm}Z$ (No Jet)