Container technology for phenomenology tools: the udocker middleware suite

Emanuele A. Bagnaschi (DESY Hamburg)

28 November 2017
11th Annual Helmholtz Alliance Workshop on “Physics at the Terascale”
DESY, Hamburg

In collaboration with J. Gomes (LIP), I. Campos (IFCA), M. David (LIP), L. Alves (LIP), J. Martins (LIP), J. Pina (LIP), A. López-Garcia (IFCA), P. Orviz (IFCA)

Based on Gomes J. et al [1711.01758]
Outline
Motivations

- Complexity of phenomenology codes has risen consistently in the past years.

- Three drivers:
 1. (Precise) physics at the LHC requires sophisticated simulations.
 2. Large data set and complex analyses.
 3. Study of complex models of fundamental physics beyond the Standard Model.
Examples

- Analysis (e.g. ROOT).
- Monte Carlo frameworks such as Madgraph_aMC@NLO, SHERPA, POWHEG-BOX, Whizard ...
- Lattice QCD computations.
- Global likelihood studies of BSM models (e.g. MasterCode, GAMBIT) ...
- Beyond HEP: molecular dynamics.

[SHERPA]

Container technology for Phenomenology tools: the udocker middleware suite
Outline

Examples

- Analysis (e.g. ROOT).
- Monte Carlo frameworks such as Madgraph_aMC@NLO, SHERPA, POWHEG-BOX, Whizard ...
- Lattice QCD computations.
- Global likelihood studies of BSM models (e.g. MasterCode, GAMBIT) ...
- Beyond HEP: molecular dynamics.

[Home page of G. Kossu]
Examples

- Analysis (e.g. ROOT).
- Monte Carlo frameworks such as Madgraph_aMC@NLO, SHERPA, POWHEG-BOX, Whizard ...
- Lattice QCD computations.
- Global likelihood studies of BSM models (e.g. MasterCode, GAMBIT) ...
- Beyond HEP: molecular dynamics.

MasterCode, 1504.03260
Examples

- Analysis (e.g. ROOT).
- Monte Carlo frameworks such as Madgraph_aMC@NLO, SHERPA, POWHEG-BOX, Whizard . . .
- Lattice QCD computations.
- Global likelihood studies of BSM models (e.g. MasterCode, GAMBIT) . . .
- Beyond HEP: molecular dynamics. . .
Deployment issues

- Complexity means that these codes have a lot of dependencies.
- Heterogeneous batch clusters.
- Large collaborations run at different sites.
Possible solutions

Virtual machines
- Emulation of a full computer system.
- Many different hypervisors exist today: KVM, VirtualBox, XEN etc.

Operating-system level virtualization
- Old idea, e.g. chroot, FreeBSD (> 4.0) jails.
- Linux containers: cgroups (> 2.6.24), namespace support (> 2.4.19).

Advantages over VMs
- Lightweight approach to virtualization (less resource hungry, more running in parallel on a single host).
- Linux container: easy to deploy on recent Linux systems (kernel version > 3.8).
Possible solutions

Virtual machines
- *Emulation* of a full computer system.
- Many different hypervisors exist today: KVM, VirtualBox, XEN etc.

Operating-system level virtualization
- Old idea, e.g. chroot, FreeBSD (> 4.0) jails.
- Linux containers: cgroups (> 2.6.24), namespace support (> 2.4.19).

Advantages over VMs
- Lightweight approach to virtualization (less resource hungry, more running in parallel on a single host).
- Linux container: easy to deploy on recent Linux systems (kernel version > 3.8).
Docker containers and the udocker suite
Docker and udocker

- As suggested by the name, udocker uses docker containers.
- Docker: software framework to automatize the deployment of application inside Linux containers.
- Other options, such as LXC, are available to use the Linux container infrastructure.

Middleware suite developed in the context of the INDIGO data-cloud project to run docker containers in userspace, without requiring root privileges (both for installation and execution).
Udocker inner workings

Features

- udocker pre-compiled code and the containers are download to `${UDOCKER_DIR}`, by default `${HOME}/.udocker`.
- Docker layered FS is UnionFS based. Images are pulled by downloading the corresponding layers and metadata (docker Hub REST API).
- udocker implements parsing of docker container and of a subset of metadata.
- Tested with GPGPU and MPI aware applications.

PTRACE engine

- Implements through PRoot.
- PRoot uses PTRACE to change the pathnames dynamically and to execute the binary transparently inside the container (P2 mode).
- Patches have been written to make SECCOMP works with PTRACE (P1 mode).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Changes container</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>PRoot+SECCOMP</td>
<td>No</td>
</tr>
<tr>
<td>P2</td>
<td>PRoot</td>
<td>No</td>
</tr>
</tbody>
</table>

Container technology for Phenomenology tools: the udocker middleware suite

Emanuele A. Bagnaschi (DESY)
Udocker inner workings

Features

- **udocker** pre-compiled code and the containers are download to `${UDOCKER_DIR}`, by default `${HOME}/.udocker`.
- Docker layered FS is UnionFS based. Images are pulled by downloading the corresponding layers and metadata (docker Hub REST API).
- **udocker** implements parsing of docker container and of a subset of metadata.
- Different execution engines: PTRACE, **LD_PRELOAD**, runC, Singularity.
- Tested with GPGPU and MPI aware applications.

LD_PRELOAD engine

- Based on the Fakechroot library.
- Implemented several workarounds to address Fakechroot shortcomings and to avoid letting the containerized application load system libraries.
- Modified version of PatchELF to perform the modifications of the binaries.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Changes container</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>exec w/ direct loader</td>
<td>symlinks</td>
</tr>
<tr>
<td>F2</td>
<td>F1 + mod. loader</td>
<td>F1+ld.so</td>
</tr>
<tr>
<td>F3</td>
<td>ELF header mod.</td>
<td>F2+ELF headers</td>
</tr>
<tr>
<td>F4</td>
<td>F3 + new execs and libs</td>
<td>as F3</td>
</tr>
</tbody>
</table>
Udocker inner workings

Features

- **udocker** pre-compiled code and the containers are downloaded to `${UDOCKER_DIR}`, by default `${HOME}/.udocker`.
- Docker layered FS is UnionFS based. Images are pulled by downloading the corresponding layers and metadata (docker Hub REST API).
- **udocker** implements parsing of docker container and a subset of metadata.
- Different execution engines: PTRACE, LD_PRELOAD, runC, Singularity.
- Tested with GPGPU and MPI aware applications.

RunC engine

- Support for unprivileged User Namespace and rootless container using RunC.
- **udocker** performs the translation between docker metadata and cli args and the OCI specs to run the container in unprivileged mode.

Singularity

- Support running singularity containers.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Changes container</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>rootless usermod namesp.</td>
<td>resolv, passwd</td>
</tr>
<tr>
<td>S1</td>
<td>singularity</td>
<td>passwd</td>
</tr>
</tbody>
</table>
Udocker inner workings

Features

- udocker pre-compiled code and the containers are download to ${UDOCKER_DIR}, by default ${HOME}/.udocker.
- Docker layered FS is UnionFS based. Images are pulled by downloading the corresponding layers and metadata (docker Hub REST API).
- udocker implements parsing of docker container and of a subset of metadata.
- Different execution engines: PTRACE, LD_PRELOAD, runC, Singularity.
- Tested with GPGPU and MPI aware applications.

RunC engine

- Support for unprivileged User Namespace and rootless container using RunC.
- udocker performs the translation between docker metadata and cli args and the OCI specs to run the container in unprivileged mode.

Singularity

- Support running singularity containers.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Changes container</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>rootless usermod namesp.</td>
<td>resolv,passwd</td>
</tr>
<tr>
<td>S1</td>
<td>singularity</td>
<td>passwd</td>
</tr>
</tbody>
</table>

Container technology for Phenomenology tools: the udocker middleware suite
Complex libraries dependencies: MasterCode
Global likelihood studies of BSM models

- Mixed collaboration of experimentalists and theorists to understand the status of BSM models in light of current constraints.
- Use of the available collider data, electro-weak precision observables and DM constraint to fit the best value and the likelihood profile of the model parameters.
- See my talk in the BSM-session this morning for our latest pMSSM study.
During our last study, we sampled a total of 2×10^9 points.

- We thank DESY for the resources provided by the NAF2/BIRD cluster.

Structure of the framework

1. **Sampling start**
2. **MultiNest selects a point**
3. **Run computer codes to compute physical observables**
4. **Compute χ^2**
5. **Save data to storage using SQLite**
6. **convergence?**
 - No
 - Yes: **Sampling end**

Codes

Spectrum generation
- SoftSUSY

Higgs sector and $(g - 2)_\mu$
- FeynHiggs, HiggsSignals, HiggsBounds

B-Physics
- SuFla, SuperISO

EW precision observables
- FeynWZ

Dark matter
- MicrOMEGAs, SSARD
Running **MasterCode with (u)docker**

- Due to its complex structure, MasterCode is a perfect test case to show the advantages of using containerization to ease the deployment.
- We have built a docker container to support MasterCode.

udocker

```bash
docker pull \[\text{indigodatacloud/docker-mastercode}\]
docker run -t -i \[\text{-v home/emanuele/mastercode -w home/emanuele/mastercode /bin/bash}\]
docker pull \[\text{indigodatacloud/docker-mastercode}\]
docker run -t -i \[\text{-v home/emanuele/mastercode -w home/emanuele/mastercode /bin/bash}\]
docker pull \[\text{indigodatacloud/docker-mastercode}\]
docker run -t -i \[\text{-v home/emanuele/mastercode -w home/emanuele/mastercode /bin/bash}\]
```

Docker

```bash
git clone https://github.com/indigo-dc/udocker.git
cd udocker.git
udocker pull \[\text{indigodatacloud/docker-mastercode}\]
docker run -t -i \[\text{-v home/emanuele/mastercode -w home/emanuele/mastercode /bin/bash}\]
```

Container technology for Phenomenology tools: the udocker middleware suite

Emanuele A. Bagnaschi (DESY)
- P2 (PTRACE) mode slower by about 30% w.r.t. to host. Expected, since compilation implies a lot of syscalls.
- The PTRACE mode with SECCOMP filtering (P1 – the default) improves a lot the situation, making udocker as fast as the VMs.
The sampling phase is characterized by less I/O activity.

udocker close to docker performances, only $O(1.5\%)$ performance hit even in P2 mode.
MPI simulations: OpenQCD
Lattice QCD is a strongly computing-characterized discipline (hundreds of millions of CPU hours/year).

Current simulations run spread over thousands of processor cores in parallel.

OpenQCD is a very advanced GPL-licensed code to run lattice simulations.

Running MPI codes w/ udocker

- Download and install the container as with MasterCode.
- **caveat**: exactly the same version of MPI on the host and in the container.
- With udocker, the mpiexec of the host system is used to submit the MPI processes.

```bash
emanuele [0]> ${HOST_OPENMPI_PATH_BIN}/mpiexec \
   -np 128 udocker run \
   --hostenv --hostauth --user=${USERID} \
   --workdir=${OPENQCD_CONTAINER_DIR} \
   openqcd \
   ${OPENQCD_CONTAINER_DIR}/ym1 -i ym1.in
```
- Scaling performance as a function of the cores for the computation of application of the Dirac operator to a spinor field (Practically, it is a sparse-matrix-matrix × vector multiplication).
- udocker at least as fast as the host.
- At CESGA udocker faster than host because of newest libraries for 8 and 16 cores.
GPU-accelerated simulations: DisVis and Gromacs
Biomolecular complexes: DisVis, Powerfit and Gromacs

- DisVis and Powerfit are MIT-licensed codes available on GitHub to model biomolecular complexes.
- They leverage GPUs through OpenCL, via PyOpenCL
- Gromacs is a molecular dynamics package for both biochemical and non-biochemical systems.

Running w/ udocker

- Download and install the container as with MasterCode.
- caveat: exactly the same version of the NVIDIA drivers and libraries needs to be installed on the host and the container.
- `udocker` and `docker` have same performance as the host when using CentOS7.
- Improved performance due to newer userland libraries when using Ubuntu16.
udocker and docker are worse than the host when using CentOS7 of $\mathcal{O}(3-5\%)$.

Same performances when using Ubuntu16.

Use of P1 mode results in $\mathcal{O}(22\%)$ performance hit (due to communication between the GPGPU and the CPU threads – Gromacs spawns 8 OpenMP threads / GPU).
Conclusions
Conclusions

- We have presented the udocker middleware suite, which allow to run seamless docker container in user-space without root access.
- The goal of udocker is to ease the deployment of complex frameworks on (heterogeneous) clusters.
- Requires no intervention from a system administrator (no root access required!).
- For CPU intensive application, there is basically no performance hit.
- I/O bounded applications require more care (use of Fn modes vs Pn modes to reduce the performance hit).