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Roadmap of todays course

•  Software 1 –  Overview: building and analyzing models !
                                     with RooFit, RooStats & HistFactory

•  Modeling 1 –  Systematic uncertainties, “Profile Likelihood”:!
                      Counting models with nuisance parameters

•  Statistics 1  – Treatment of nuisance parameters in statistics inference
•  Software 2  – Hands-on: Counting models with NPs in RooFit!

                                       limits & confidence intervals with RooStats!


•  Modeling 2   – Modeling distributions with nuisance parameters,!
                       basics of template morphing

•  Modeling 3   – Understanding complex fits – debugging techniques
•  Software 3   – Hands-on: Modeling (un)binned distributions in RooFit,!

                                        Combination & reparametrization!
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Software 1 
 

Overview: 
 building and analyzing models  

with 
RooFit, RooStats & HistFactory
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The HEP analysis workflow illustrated
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All experimental results start with the formulation of a model

•  Examples of HEP physics models being tested
–  SM with m(top)=172,173,174 GeV à Measurement top quark mass
–  SM with/without Higgs boson à Discovery of Higgs boson
–  SM with composite fermions/Higgs à Measurement of Higgs coupling properties

•  Via chain of physics simulation, showering MC, detector simulation and 
analysis software, a physics model is reduced to a statistical model

•  A statistical model defines p(data|theory) for all observable outcomes
–  Example of a statistical model for a counting measurement with a known background
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s=0

s=5
s=10

s=15 NB: b is a constant in this example

Definition: the Likelihood !
is P(observed data|theory)!

Nobs



Everything starts with the likelihood

•  All fundamental statistical procedures are based !
on the likelihood function as ‘description of the measurement’

Frequentist statistics 

Confidence interval on s! Posterior on s! s = x ± y!

Bayesian statistics  Maximum Likelihood

Nobs e.g. L(15|s=0)!
e.g. L(15|s=10)!



Everything starts with the likelihood
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Frequentist statistics 

Confidence interval!
or p-value!

Posterior on s!
or Bayes factor!

s = x ± y!

Bayesian statistics  Maximum Likelihood

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!



How is Higgs discovery different from a simple fit?
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Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)



ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)

How is Higgs discovery different from a simple fit?
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Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Likelihood Model 
orders of magnitude more 
complicated. Describes
    - O(100) signal distributions
    - O(100) control sample distr.
    - O(1000) parameters 
                    representing  
                    syst. uncertainties

Frequentist confidence interval 
construction and/or p-value 
calculation not available 
as ‘ready-to-run’ algorithm 
in ROOT



How is Higgs discovery different from a simple fit?
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Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Model Building phase (formulation of L(x|H)

ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)



ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)

How is Higgs discovery different from a simple fit?
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Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Model Usage phase (use L(x|H) to make statement on H)



ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)

How is Higgs discovery different from a simple fit?
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Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Design goal:
Separate building of Likelihood model as much as possible!
from statistical analysis using the Likelihood model

à  More modular software design
à  ‘Plug-and-play with statistical techniques
à  Factorizes work in collaborative effort 



The idea behind the design of RooFit/RooStats/HistFactory

•  Modularity, Generality and flexibility
•  Step 1 – Construct the likelihood function L(x|p)!

•  Step 2 – Statistical tests on parameter of interest p !
!
Procedure can be Bayesian, Frequentist, or Hybrid), !
but always based on L(x|p)

•  Steps 1 and 2 are conceptually separated, !
and in Roo* suit also implemented separately.

Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory!

RooStats!



The idea behind the design of RooFit/RooStats/HistFactory

•  Steps 1 and 2 can be ‘physically’ separated (in time, or user)
•  Step 1 – Construct the likelihood function L(x|p)"

"
"
"
"


•  Step 2 – Statistical tests on parameter of interest p !
!
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RooFit,  or  RooFit+HistFactory!

RooStats!

RooWorkspace!

Complete description"
of likelihood model,"
persistable in ROOT file
(RooFit pdf function)

Allows full introspection"
and a-posteriori editing"




The benefits of modularity

•  Perform different statistical test on exactly the same model

Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory!

RooStats!
(Frequentist!
with toys) !

RooWorkspace!

RooStats!
(Frequentist!
asymptotic) !

RooStats!
Bayesian!
MCMC!

“Simple fit”!
! (ML Fit with 

HESSE or 
MINOS) 



RooFit!

WV + D. Kirkby - 1999 



RooFit – Focus: coding a probability density function

•  Focus on one practical aspect of many data analysis in HEP: !
How do you formulate your p.d.f. in ROOT 

–  For ‘simple’ problems (gauss, polynomial) this is easy
–  But if you want to do unbinned ML fits, use non-trivial functions, or work with 

multidimensional functions you quickly find that you need some tools to help you

•  The RooFit project started in 1999 for data modeling needs for 
BaBar collaboration initially, publicly available in ROOT since 2003



RooFit core design philosophy

•  Mathematical objects are represented as C++ objects


variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 

)(xf

x

x!

dxxf
x

x
∫
max

min

)(

)(xf
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Data modeling – Constructing composite objects

•  Straightforward correlation between mathematical representation 
of formula and RooFit code

RooRealVar x 

RooRealVar s 

RooFormulaVar sqrts 

RooGaussian g 

� RooRealVar x(“x”,”x”,-10,10) ; 
� RooRealVar m(“m”,”mean”,0) ; 
� RooRealVar s(“s”,”sigma”,2,0,10) ; 
� RooFormulaVar sqrts(“sqrts”,”sqrt(s)”,s) ; 
� RooGaussian g(“g”,”gauss”,x,m,sqrts) ; 

Math 

RooFit 
diagram 

RooFit 
code 

RooRealVar m 

),,( smxgauss

� 
� 

� 

� 

� 



RooFit core design philosophy 

•  A special container class owns all objects that together build a 
likelihood function

RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace (keeps all parts together)

Gauss(x,µ,σ) 

Wouter Verkerke, NIKHEF

New feature for LHC



Populating a workspace the easy way – “the factory”

•  The factory allows to fill a workspace with pdfs and variables using 
a simplified scripting language

RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 
w.factory(“Gaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace

Gauss(x,µ,σ) 
New feature for LHC



Wouter Verkerke, NIKHEF 

Model building – (Re)using standard components

•  RooFit provides a collection of compiled standard PDF classes

RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 
Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,…. 

Non-parametric 
Histogram, KEYS 

Easy to extend the library: each p.d.f. is a separate C++ class 
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Model building – (Re)using standard components

•  Library p.d.f.s can be adjusted on the fly.
–  Just plug in any function expression you like as input variable
–  Works universally, even for classes you write yourself

•  Maximum flexibility of library shapes keeps library small

g(x,y;a0,a1,s) 
g(x;m,s) m(y;a0,a1) 

RooPolyVar  m(“m”,y,RooArgList(a0,a1)) ; 
RooGaussian g(“g”,”gauss”,x,m,s) ; 



From empirical probability models to simulation-based models

•  Large difference between B-physics and LHC hadron physics is 
that for the latter distributions usually don’t follow simple analytical 
shapes

•  But concept of simulation-driven template models can also extent 
to systematic uncertainties. Instead of empirically chosen 
‘nuisance parameters’ (e.g. polynomial coefs) construct degrees 
of freedom that correspond to known systematic uncertainties  

Wouter Verkerke, NIKHEF 

Unbinned analytical "
probability model

(Geant) Simulation-driven"
binned template model 



The HEP analysis workflow illustrated
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physics process
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physics process
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Detector 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Modeling of shape systematics in the likelihood

•  Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain

–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ !
settings of systematic effect

•  Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’
“Jet Energy Scale” 



Need to interpolate between template models

•  Need to define ‘morphing’ algorithm to define !
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF

s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

xα



Example 2 : binned L with syst

•  Example of template morphing!
systematic in a binned likelihood

Wouter Verkerke, NIKHEF

L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m) ; 
 
 // Construct template models from histograms 

 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“HistFunc::s_p(x,hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 

 // Construct morphing model 

 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct full model 

 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 



The structure of an (Higgs) profile likelihood function

•  Likelihood describing Higgs samples have following structure

Wouter Verkerke, NIKHEF 

LH→X (x |µ,
!
θ ) = Lphys (x |µ,

!
θ )

i=0...n
∏ ⋅ Lcontrol (x |µ,

!
θ )

i=0...n
∏ ⋅Lsub(θ1) ⋅Lsub(θ1

) ⋅!⋅Lsub(θn )

Signal region 1

Signal region 2

Control region 1 Control region 2

‘Constraint θ1’ ‘Constraint θn’

‘Constraint θn’Strength of"
systematic "

uncertainties



The structure of an (Higgs) profile likelihood function
•  A simultaneous fit of physics samples and (simplified) performance measurements

Wouter Verkerke, NIKHEF 

LH→X (x |µ,
!
θ ) = Lphys (x |µ,

!
θ )

i=0...n
∏ ⋅ Lcontrol (x |µ,

!
θ )

i=0...n
∏ ⋅Lsub(θ1) ⋅Lsub(θ1

) ⋅!⋅Lsub(θn )

Signal region 1

Signal region 2

Control region 1 Control region 2

‘Simplified Likelihood of "
a measurement related"

to systematic uncertainties’

‘Subsidiary "
measurement 1’

‘Jet Energy scale’

‘Subsidiary "
measurement 2’

B-tagging eff

‘Subsidiary "
measurement n’"

Factorization scale



The Workspace!



The workspace

•  The workspace concept has revolutionized the way people share and 
combine analysis

–  Completely factorizes process of building and using likelihood functions
–  You can give somebody an analytical likelihood of a (potentially very complex) 

physics analysis in a way to the easy-to-use, provides introspection, and is easy to 
modify.

Wouter Verkerke, NIKHEF 

RooWorkspace 

RooWorkspace w(“w”) ; 
w.import(sum) ; 
w.writeToFile(“model.root”) ; 

model.root 



Using a workspace 

Wouter Verkerke, NIKHEF Wouter Verkerke, NIKHEF  

RooWorkspace 

// Resurrect model and data 
TFile f(“model.root”) ; 
RooWorkspace* w = f.Get(“w”) ; 
RooAbsPdf* model = w->pdf(“sum”) ; 
RooAbsData* data = w->data(“xxx”) ; 
 
// Use model and data 
model->fitTo(*data) ; 
RooPlot* frame =  
         w->var(“dt”)->frame() ; 
data->plotOn(frame) ; 
model->plotOn(frame) ; 



The idea behind the design of RooFit/RooStats/HistFactory

•  Step 1 – Construct the likelihood function L(x|p)"
"
"
"
"
"
"


•  Step 2 – Statistical tests on parameter of interest p !
!


Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory!

RooStats!

RooWorkspace!

Complete description"
of likelihood model,"
persistable in ROOT file
(RooFit pdf function)
Allows full introspection"
and a-posteriori editing"


RooWorkspace w(“w”) ; 
w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”) ; 

w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 

w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 

w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data) ; 



Example RooFit component model for realistic Higgs analysis

variables
function objects

Graphical illustration of function!
components that call each other


Likelihood model describing the !
ZZ invariant mass distribution 
including all possible systematic "
uncertainties

RooFit  
workspace 



Analysis chain identical for highly complex (Higgs) models

•  Step 1 – Construct the likelihood function L(x|p)"
"
"
"
"
"
"


•  Step 2 – Statistical tests on parameter of interest p !
!
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RooStats!

RooWorkspace!

Complete description"
of likelihood model,"
persistable in ROOT file
(RooFit pdf function)
Allows full introspection"
and a-posteriori editing"


RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data, 
           GlobalObservables(w->set(“MC_GlObs”), 
           Constrain(*w->st(“MC_NuisParams”) ; 



Workspaces power collaborative statistical modelling

•  Ability to persist complete(*) Likelihood models !
has profound implications for HEP analysis workflow

–  (*) Describing signal regions, control regions, and including nuisance 
parameters for all systematic uncertainties)

•  Anyone with ROOT (and one ROOT file with a workspace) !
can re-run any entire statistical analysis out-of-the-box!

–  About 5 lines of code are needed
–  Including estimate of systematic uncertainties

•  Unprecedented new possibilities for cross-checking results, !
in-depth checks of structure of analysis

–  Trivial to run variants of analysis (what if ‘Jet Energy Scale uncertainty’ is 7% 
instead of 4%). Just change number and rerun.

–  But can also make structural changes a posteri. For example, rerun with 
assumption that JES uncertainty in forward and barrel region of detector are 
100% correlated instead of being uncorrelated.

Wouter Verkerke, NIKHEF 



Collaborative statistical modelling

•  As an experiment, you can effectively build a library of 
measurements, of which the full likelihood model is !
preserved for later use

–  Already done now, experiments have such libraries of workspace files,
–  Archived in AFS directories, or even in SVN….
–  Version control of SVN, or numbering scheme in directories allows for easy 

validation and debugging as new features are added!


•  Building of combined likelihood models greatly simplified. 
–  Start from persisted components. No need to (re)build input components.
–  No need to know how individual components were built, or are internally 

structured. Just need to know meaning of parameters. 
–  Combinations can be produced (much) later than original analyses.
–  Even analyses that were never originally intended to be combined with 

anything else can be included in joint likelihoods at a later time

Wouter Verkerke, NIKHEF 



Higgs discovery strategy – add everything together

HàZZàllll Hàττ HàWWàμνjj

+… 

Assume SM rates 

L(µ,

θ ) = LH→WW (µWW ,


θ ) ⋅LH→γγ (µγγ ,


θ ) ⋅LH→ZZ (µZZ ,


θ ) ⋅…

Dedicated physics working groups "
define search for each of the 
major Higgs decay channels "
(HàWW, HàZZ, Hàττ etc)."
"
Output is physics paper or note, "
and a RooFit workspace with the "
full likelihood function

A small dedicated team of specialists builds a combined likelihood from the inputs. "
Major discussion point: naming of parameters, choice of parameters for systematic "
uncertainties (a physics issue, largely)



The benefits of modularity

•  Technically very straightforward to combine measurements "
"
"
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RooFit,  or  RooFit+HistFactory!

RooStats

RooWorkspace! RooWorkspace!

RooWorkspace!

Higgs channel 1 Higgs channel 2

Combiner!

RooStats!

Higgs
Combination

Lightweight"
software tool"
using RooFit"
editor tools"
(~500 LOC)

Insertion of "
combination "

step does not "
modify workflow "

before/after "
combination step



Workspace persistence of really complex models works too!

F(x,p)

x p

Atlas Higgs combination model (23.000 functions, 1600 parameters)

Model has ~23.000 function objects, ~1600 parameters
Reading/writing of full model takes ~4 seconds!

ROOT file with workspace is ~6 Mb




With these combined models the Higgs discovery plots were produced…

Wouter Verkerke, NIKHEF 

LATLAS(µ,θ) = 

Neyman construction!
with profile likelihood !

ratio test

CMS



More benefits of modularity

•  Technically very straightforward to reparametrize measurements "
"
"
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RooFit,  or  RooFit+HistFactory!

RooStats

RooWorkspace!

RooWorkspace!

Standard !
Higgs combination

Reparametrize!

RooStats!

Lightweight!
software tool!
using RooFit!
editor tools

Reparametrization  
step does not  

modify workflow  
 

BSM!
Higgs combination



BSM Higgs constraints from!
reparametrization of SM Higgs!
Likelihood model 

Wouter Verkerke, NIKHEF 

Simplified MSSM (tanβ,mA)

Imposter model(M,ε)
Minimal composite Higgs(ξ)

Two Higgs "
Double Model"
(tanβ,cos(α-β))

Portal model (mX)

(ATLAS-CONF-2014-010)



An excursion – Collaborative analyses with workspaces

•  How can you reparametrize existing Higgs likelihoods in practice?
•  Write functions expressions corresponding to new parameterization!

!


•  Import transformation in workspace, edit existing model 

Wouter Verkerke, NIKHEF 

w.factory(“expr::mu_gg_func(‘(KF2*Kg2)/ 
                            (0.75*KF2+0.25*KV2)’, 
                            KF2,Kg2,KV2) ; 

w.import(mu_gg_func) ; 

w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ; 



HistFactory!

K. Cranmer, A. Shibata, G. Lewis, L. Moneta, W. Verkerke (2010) 



HistFactory – structured building of binned template models

•  RooFit modeling building blocks allow to easily construct!
likelihood models that model shape and rate systematics with!
one or more nuisance parameter

–  Only  few lines of code per construction

•  Typical LHC analysis required modeling of 10-50 systematic 
uncertainties in O(10) samples in anywhere between 2 and 100 
channels  à Need structured formalism to piece together 
model from specifications. This is the purpose of HistFactory

•  HistFactory conceptually similar to workspace factory, but has 
much higher level semantics

–  Elements represent physics concepts (channels, samples, uncertainties and 
their relation) rather than mathematical concepts

–  Descriptive elements are represented by C++ objects (like roofit),!
and can be configured in C++, or alternively from an XML file

•  HistFactory builds a RooFit (mathematical) model !
from a physics model.!

Wouter Verkerke, NIKHEF



HistFactory elements of a channel

•  Hierarchy of concepts for description of one measurement channel

Wouter Verkerke, NIKHEF

(Theory) sample !
normalization

Template morphing shape systematic

Beeston-Barlow-lite MC statistical uncertainties



HistFactory elements of measurement

•  One or more channels are combined to form a measurement
–  Along with some extra information (declaration of the POI, the luminosity of the 

data sample and its uncertainty)

Wouter Verkerke, NIKHEF
Once physics model is defined, one line of code will turn it into a RooFit likelihood 



How is Higgs discovery different from a simple fit?

Wouter Verkerke, NIKHEF 

Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

Maximum Likelihood estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)

μ = 5.3 ± 1.7

“inside ROOT”

Likelihood Model 
orders of magnitude more 
complicated. Describes
    - O(100) signal distributions
    - O(100) control sample distr.
    - O(1000) parameters 
                    representing  
                    syst. uncertainties

Frequentist confidence interval 
construction and/or p-value 
calculation not available 
as ‘ready-to-run’ algorithm 
in ROOT

✔ 



RooStats!

K. Cranmer, L. Moneta, S. Kreiss, G. Kukartsev, G. Schott, G. Petrucciani, WV - 2008 



The benefits of modularity

•  Perform different statistical test on exactly the same model

Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory!

RooStats!
(Frequentist!
with toys) !

RooWorkspace!

RooStats!
(Frequentist!
asymptotic) !

RooStats!
Bayesian!
MCMC!

“Simple fit”!
! (ML Fit with 

HESSE or 
MINOS) 



Maximum Likelihood estimation as simple statistical analysis

•  Step 1 – Construct the likelihood function L(x|p)"
"
"
"
"
"
"


•  Step 2 – Statistical tests on parameter of interest p !
!


Wouter Verkerke, NIKHEF 

RooStats!

RooWorkspace!

RooWorkspace w(“w”) ; 
w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”; 

w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 

w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 

w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data) ; 



The need for fundamental statistical techniques

Wouter Verkerke, NIKHEF

Frequentist statistics 

Confidence interval!
or p-value!

Posterior on s!
or Bayes factor! s = x ± y!

Bayesian statistics  Maximum Likelihood

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!

No assumptions!
on normal distributions,!
or asymptotic validity !

for high statistics!

Formulation!
of p(th|data)!



But fundamental techniques can be complicated to execute…

•  Example of confidence interval calculation with Neyman construction
–  Need to construct ‘confidence belt’ using toy MC. Intersection observed data with 

belt defined interval in POI  with guaranteed coverage  !


•  Expensive, complicated procedure, but completely procedural"
once Likelihood and parameter of interest are fixed !
à Can be wrapped in a tool that runs effectively ‘out-of-the-box’ 








Wouter Verkerke, NIKHEF 

x=3.2

observable x

pa
ra

m
et

er
 μ
 tμ(x,μ)

Likelihood Ratio
pa

ra
m

et
er

 μ
 = −2 log L(x |µ)

L(x | µ̂)



Running RooStats interval calculations ‘out-of-the-box’

•  Confidence intervals calculated with model
–  ‘Simple!

Fit’


–  Feldman!

Cousins!
(Frequentist!
Confidence!
Interval)


–  Bayesian !

(MCMC)

Wouter Verkerke, NIKHEF 

FeldmanCousins fc;  
fc.SetPdf(myModel);  

fc.SetData(data); fc.SetParameters(myPOU);  
fc.UseAdaptiveSampling(true);  
fc.FluctuateNumDataEntries(false);  
fc.SetNBins(100); // number of points to test per parameter  
fc.SetTestSize(.1);  
ConfInterval* fcint = fc.GetInterval();  

UniformProposal up;  
MCMCCalculator mc;  
mc.SetPdf(w::PC);  
mc.SetData(data);  mc.SetParameters(s);  
mc.SetProposalFunction(up);  
mc.SetNumIters(100000); // steps in the chain  
mc.SetTestSize(.1); // 90% CL  
mc.SetNumBins(50); // used in posterior histogram  
mc.SetNumBurnInSteps(40);  

ConfInterval* mcmcint = mc.GetInterval(); 

RooAbsReal* nll = myModel->createNLL(data) ; 
RooMinuit m(*nll) ; 

m.migrad() ; 

m.hesse() ; 



But you can also look ‘in the box’ and build your own

Tool to calculate p-values for a given hypothesis

Tool to construct !
interval from !
hypo test results

The test statistic
to be used for!
the calculation!
of p-values 

)(µµ ʹq

µµ

µ

µ dqqf
obsq
∫
∞

ʹ
,

)|(

)|( µµ ʹqf
Tool to construct!
test statistic!
distribution

Offset advanced control over details of statistical"
procedure (use of CLS, choice of test statistic, boundaries…)



RooStats class structure

Wouter Verkerke, NIKHEF 



Summary
•  RooFit and RooStats allow you to perform advanced statistical data 

analysis
–  LHC Higgs results a prominent example

Wouter Verkerke, NIKHEF 

•  RooFit provides (almost) limitless !
model building facilities

–  Concept of persistable model workspace allows to 
separate model building and model interpretation

–  HistFactory package introduces structured model 
building for binned  likelihood template models that 
are common in LHC analyses

•  Concept of RooFit Workspace has!
completely restructured HEP analysis!
workflow with ‘collaborative modeling’

•  RooStats provide a wide set of statistical 
tests that can be performed on RooFit 
models

–  Bayesian, Frequentist and Likelihood-based test 
concepts

CMS 

ATLAS 



Modeling 1  


Systematic uncertainties, 
“Profile Likelihood”: 

 
Counting models  

with nuisance parameters

Wouter Verkerke, NIKHEF 



Most statistics textbooks deal with the ideal experiment

•  The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement

•  For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial!
!
!
!
!
!
!
!
!


•  So far only considered a single parameter in the likelihood:!
the physics parameter of interest, usually denoted as μ

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment

•  In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest

•  How do you model these uncertainties in the likelihood? 

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions"
are affected by (systematic) uncertainties



Adding parameters to the model

•  We can describe uncertainties in our model by adding new 
parameters of which the value is uncertain

•  These additional model parameters are not ‘of interest’, but we 
need them to model uncertainties à ‘Nuisance parameters’


Wouter Verkerke, NIKHEF

L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏



What are the nuisance parameters of your physics model?

•  Empirical modeling of uncertainties, e.g. polynomial for background, 
Gaussian for signal, is easy to do, but may lead to hard questions!
!


•  Is your model correct? (Is true signal distr. captured by a Gaussian?)
•  Is your model flexible enough? (4th order polynomial, or better 6th)?
•  How do model parameters connect to known detector/theory 

uncertainties in your distribution? 
–  what conceptual uncertainty do your parameters represent?

Wouter Verkerke, NIKHEF

L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )



The simulation workflow and origin of uncertainties

• Wouter Verkerke, NIKHEF
Wouter Verkerke, NIKHEF 

Simulation of high-energy!
physics process

Simulation of ‘soft physics’!
physics process

Simulation of ATLAS!
detector

Reconstruction !
of ATLAS detector

LHC data
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Typical systematic uncertainties in HEP

•  Detector-simulation related
–  “The Jet Energy scale uncertainty is 5%”
–  “The b-tagging efficiency uncertainty is 20% for jets with pT<40”!



•  Physics/Theory related
–  The top cross-section uncertainty is 8%
–  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty”
–  “Evaluate the effect of using Herwig and Pythia and consider the difference !

the systematic uncertainty”!


•  MC simulation statistical uncertainty
–  Effect of (bin-by-bin) statistical uncertainties in MC samples 

• Wouter Verkerke, NIKHEF



What can you do with systematic uncertainties

•  As most of the typical systematic prescriptions have no immediately 
apparent parametric formulation in your likelihood, common approach 
is ‘vary setting, rerun analysis, observe the difference’ 

•  This common ‘naïve’ approach to assess effect of systematic 
uncertainties amounts to simple error propagation

•  Error propagation procedure in a nutshell
–  Make nominal measurement (using your favorite statistical inference procedure)
–  Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1 

sigma’ up and down ) Redo measurement procedure for each shift
–  Consider propagated effect of shifted setting the systematic uncertainty!


!


• Wouter Verkerke, NIKHEF

µ = µnom ±σ stat ± (µsyst
up −µsyst

down ) / 2±...

From statistical"
analysis

Systematic uncertainty"
from error propagation



Pros and cons of the ‘naïve’ approach

•  Pros
–  It’s easy to do
–  It results in a seemingly easy-to-interpret table of systematics

•  Cons
–  Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored
–  Magnitude of stated systematic uncertainty may be incompatible with 

measurement result à Completely ignored 
–  You lost the connection with fundamental statistical techniques !

(i.e. evaluation of systematic uncertainties is completely detached from 
statistical procedure used to estimate physics quantity of interest) à No 
prescription to make confidence intervals, Bayesian posteriors etc in this way

–  No calibrated probabilistic statements possible (95% C.L.)

•  ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 

• Wouter Verkerke, NIKHEF



Everything starts with the likelihood

• Wouter Verkerke, NIKHEF

Frequentist statistics 

Confidence interval!
or p-value!

Posterior on s!
or Bayes factor!

s = x ± y!

Bayesian statistics  Maximum Likelihood

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!



Introducing uncertainties – a non-systematic example

•  The original model (with fixed b)

•  Now consider b to be uncertain!
!


•  The experimental data contains insufficient to constrain both!
s and b à Need to add an additional measurement to constrain b

• Wouter Verkerke, NIKHEF

s=0 

s=5 

s=10 
s=15 

L(N|s) à L(N|s,b)



The sideband measurement

•  Suppose your data !
in reality looks like this è !
!
!
!
!
Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space !


•  Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents !
the amount of bkg is the SR. !
!
Scale factor τ accounts for difference !
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”



Generalizing the concept of the sideband measurement

•  Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’!
!
 

•  Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty 
 
 
 
 
 


–  We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement

 • Wouter Verkerke, NIKHEF

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’!
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’!



What is a systematic uncertainty?

•  Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.

–  E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” !
does not discuss systematic uncertainties at all!


•  A common definition is
–  “Systematic uncertainties are all uncertainties that are !

not directly due to the statistics of the data”!


•  But the notion of ‘the data’ is a key source of ambiguity: 
–  does it include control measurements?
–  does it include measurements that were used to perform basic !

(energy scale) calibrations?

• Wouter Verkerke, NIKHEF



Typical systematic uncertainties in HEP

•  Detector-simulation related
–  “The Jet Energy scale uncertainty is 5%”
–  “The b-tagging efficiency uncertainty is 20% !

 for jets with pT<40”!


•  Physics/Theory related
–  The top cross-section uncertainty is 8%
–  “Vary the factorization scale by a factor 0.5 !

and 2.0 and consider the difference !
the systematic uncertainty”

–  “Evaluate the effect of using !
Herwig and Pythia and consider the difference !
the systematic uncertainty”!


•  MC simulation statistical uncertainty
–  Effect of (bin-by-bin) statistical uncertainties!

in MC samples 

• Wouter Verkerke, NIKHEF

Subsidiary measurement!
is an actual measurement!
à conceptually similar to !
    a ‘sideband’ fit

Subsidiary measurement!
unclear, but origin of!
prescription may well!
be another measurement
(if yes, like sideband, if!
 no, what is source of info?)

Subsidiary measurement!
is a Poisson counting!
experiment (but now in!
MC events), otherwise!
conceptually identical to!
a ‘sideband fit’



Typical systematic uncertainties in HEP

•  Detector-simulation related
–  “The Jet Energy scale uncertainty is 5%”
–  “The b-tagging efficiency uncertainty is 20% !

 for jets with pT<40”!


•  Physics/Theory related
–  The top cross-section uncertainty is 8%
–  “Vary the factorization scale by a factor 0.5 !

and 2.0 and consider the difference !
the systematic uncertainty”

–  “Evaluate the effect of using !
Herwig and Pythia and consider the difference !
the systematic uncertainty”!


•  MC simulation statistical uncertainty
–  Effect of (bin-by-bin) statistical uncertainties!

in MC samples 

• Wouter Verkerke, NIKHEF

Subsidiary measurement!
is an actual measurement!
à conceptually to !
    a ‘sideband’ fit

Subsidiary measurement!
unclear, but origin of!
prescription may well!
be another measurement
(if yes, like sideband, if!
 no, what is source of info?)

Subsidiary measurement!
is a Poisson counting!
experiment (but now in!
MC events), otherwise!
conceptually identical to!
a ‘sideband fit’

Almost all systematic uncertainties are similar in nature 
to ‘sidebands’ measurements of some form or shape!

à Can always model systematics like sidebands !
     in the Likelihood

And even when the are not the (in)direct result of !
some measurement (certainty theory uncertainties)!
we can still model them in that form




Modeling a detector calibration uncertainty

•  Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 

L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)

Observed event count

Nominal background !
expectation from MC!
(a constant), obtained!
with a=a˜

Response function!
for JES uncertainty!
(a 1% JES change !

results in a 2% !
acceptance change)

“Subsidiary measurement”
Encodes ‘external knowledge’ !
on JES calibration

Nominal calibration
Assumed calibration

Uncertainty!
on nominal!
calibration!
(here 5%)!

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty

•  Simplify expression by renormalizing “subsidiary measurement”

• Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background !
expectation from MC!
(a constant)

Response function 
for normalized JES  

parameter!
[a unit change in α !

– a 5% JES change –  !
still results in a 10% !
acceptance change]

“Normalized !
subsidiary measurement”!
!
The scale of parameter 
α is now chosen such that  
values ±1 corresponds to the  
nominal uncertainty 
(in this example 5%) 

Gauss( α |α,σα )



The response function as empirical model of full simulation

•  Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain

–  But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming

–  Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation

–  For example run at nominal JES and with JES shifted up and down by ±5%

• Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)


-1  0  +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation"
of true response



What is a systematic uncertainty?

•  It is an uncertainty in the Likelihood of your physics measurement!
that is characterized deterministically, up to a set of parameters,!
of which the true value is unknown.

•  A fully specified systematic uncertainty defines 
–  1: A set of one or more parameters !

    of which the true value is unknown, 
–  2: A response model that describes the effect of those !

    parameters on the measurement!
    (sampled from full simulation, and interpolation)

–  3: A subsidiary measurement of the parameters!
    that constrains the values the parameters can take!
    (implies a specific distribution: Gaussian (default, CLT),!
     Poisson (low-stats counting), or otherwise)



• Wouter Verkerke, NIKHEF



Names and conventions – ‘profiling’ & ‘constraints’

•  The full likelihood function of the form !
!
!
!
is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way

–  Note: statisticians use the word profiling for something else

•  Physicists often refer to the subsidiary measurement as a 
‘constraint term’

–  This is correct in the sense that it constrains the parameter α, but this labeling 
commonly lead to mistaken statements (e.g. that it is a pdf for α)

–  But it is not a pdf in the NP

• Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)



Names and conventions

•  The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point

–  The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure

–  In a perfect world, not bound by technical modelling constraints!
you would use this likelihood!
!
!
!
where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.

•  Since we are bound by technical constrains, we substitute LJES 
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same

• Wouter Verkerke, NIKHEF

L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



MC statistical uncertainties as systematic uncertainty

•  Another example of modeling a systematic uncertainty:!
MC statistical uncertainty

•  Follow same procedure again as before: 
–  Define response function (this is trivial for MC statistics: !

it is the luminosity ratio of the MC sample and the data sample)
–  Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process
–  Construct full likelihood (‘profile likelihood’)

•  Note uncanny similarity to full likelihood of a sideband measurement! 

• Wouter Verkerke, NIKHEF

L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)

L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



Modeling multiple systematic uncertainties

•  Introduction of multiple systematic uncertainties presents no 
special issues

•  Example JES uncertainty plus generator ISR uncertainty


•   A brief note on correlations

–  Word “correlations” often used sloppily – proper way is to think of correlations 
of parameter estimators. Likelihood defines parameters αJES, αISR. !
The (ML) estimates of these are denoted

–  The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)

–  The ML estimators of               using the full Likelihood may be correlated.!
This is due to physics modeling effects encoded in the joint response function 

• Wouter Verkerke, NIKHEF

L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function!
for both systematics

One subsidiary!
measurement for each 
source of uncertainty

α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels

•  Systematic effects that affect multiple measurements should be 
modeled coherently.

–  Example – Likelihood of two Poisson counting measurements

–  Effect of changing JES parameter αJES coherently affects both measurement.
–  Magnitude and sign effect does not need to be same, this is dictated by the 

physics of the measurement 

• Wouter Verkerke, NIKHEF

L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response !
function for !
channel A

JES response 
function for !
channel B

JES!
subsidiary!

measurement



Statistics 1 
 

treatment of nuisance 
parameters in statistics 

inference

 


Wouter Verkerke, NIKHEF 



The statisticians view on nuisance parameters

•  In general, our model of the data is not perfect

•  Can improve modeling by including additional adjustable parameters
•  Goal: some point in the parameter space of the enlarged model 

should be “true”
•  Presence of nuisance parameters decreases the sensitivity of the 

analysis of the parameter(s) of interest

• Wouter Verkerke, NIKHEF



Treatment of nuisance parameters in parameter estimation

•  In POI parameter estimation, the effect of NPs incorporated 
through unconditional minimization

–  I.e. minimize Likelihood w.r.t all parameter simultaneously.

•  Simple example with 2-bin Poisson counting experiment

• Wouter Verkerke, NIKHEF

L(s,b) = Poisson(10 | s+ b)Poisson(10 | 3⋅b)

Unconditional!
minimum in s,b

Conditional !
minimum in s!
(condition: b=5)

(ŝ, b̂)

ˆ̂s
b=5

L(s) = Poisson(10 | s+ 5)



Treatment of nuisance parameters in variance estimation

•  Maximum likelihood estimator of parameter variance !
is based on 2nd derivative of Likelihood 

–  For multi-parameter problems this 2nd derivative is generalized !
by the Hessian Matrix of partial second derivatives!
!
!
!


•  For multi-parameter likelihoods estimate of covariance Vij of pair!
of 2 parameters in addition to variance of individual parameters

–  Usually re-expressed in terms dimensionless correlation coefficients ρ 

• Wouter Verkerke, NIKHEF
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Treatment of nuisance parameters in variance estimation

•  Effect of NPs on variance estimates visualized

• Wouter Verkerke, NIKHEF

Scenario 1
Estimators of !

POI and NP correlated!
i.e. ρ(s,b)≠0

Scenario 2
Estimators of !

POI and NP correlated!
i.e. ρ(s,b)=0
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Treatment of NPs in hypothesis testing and conf. intervals

•  We’ve covered frequentist hypothesis testing and interval 
calculation using likelihood ratios based on a likelihood with a 
single parameter (of interest) L(μ)

–  Result is p-value on hypothesis with given μ value, or
–  Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at or 

above a certain level (the confidence level)

•  How do you do this with a likelihood L(μ,θ) where θ is a nuisance 
parameter?

–  With a test statistics qμ, we calculate p-value for hypothesis θ as 

•  But what values of θ do we use for f(qμ|μ,θ)?!
Fundamentally, we want to reject μ only if p<α for all θ!
à Exact confidence interval

∫
∞

=
obsq

dqqfp
,

),|(
µ

µµµ θµ



Hypothesis testing & conf. intervals with nuisance parameters

•  The goal is that the parameter of interest should be covered at the 
stated confidence for every value of the nuisance parameter

•  if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that value of the 
POI should be considered: 

–  e.g. don’t claim discovery if any background scenario is compatible with data!


•  But: technically very challenging and significant problems with 
over-coverage

–  Example: how broadly should ‘any background scenario’ be defined?  Should 
we include background scenarios that are clearly incompatible with the 
observed data?

• Wouter Verkerke, NIKHEF, 92



The profile likelihood construction as compromise

•  For LHC the following prescription is used: !
!
                Given L(μ,θ)!
!
perform hypothesis test for each value of μ (the POI), !
!
using values of nuisance parameter(s) θ that best fit the data 
under the hypothesis μ

•  Introduce the following notation!
!


•  The resulting confidence interval will have exact coverage for the 
points

–  Elsewhere it may overcover or undercover (but this can be checked)

• Wouter Verkerke, NIKHEF, 93

)(ˆ̂ µθ M.L. estimate of θ for a given value of μ!
(i.e. a conditional ML estimate)

))(ˆ̂,( µθµ

POI

NPs



The profile likelihood ratio

•  With this prescription we can construct the profile likelihood ratio 
as test statistic

•  NB: value profile likelihood ratio does not depend on θ 

• Wouter Verkerke, NIKHEF, 94
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Profiling illustration with one nuisance parameter

• Wouter Verkerke, NIKHEF, 95
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Profile scan of a Gaussian plus Polynomial probability model

• Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) !
for each value of fsig !
by changing bkg shape params!
(a 6th order Chebychev Pol)



Profile scan of a Gaussian plus Polynomial probability model

• Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) !
for each value of fsig !
by changing bkg shape params!
(a 6th order Chebychev Pol)

Interval on μ widens 
due to effect of uncertain NPs 



PLR Confidence interval vs MINOS

tμ(x,μ)

Profile Likelihood Ratio
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Confidence !
belt now !
range in PLR tμ(x,μ)

Profile Likelihood Ratio
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 θ


Measurement = tμ(xobs,μ) !
is now a function of μ

Asymptotically,!
distribution is identical!
for all μ

NB: asymptotically, distribution "
is also independent of true "
values of θ



Link between MINOS errors and profile likelihood

!
!
!
!
!
!
!


•  Note that MINOS algorithm in !
MINUIT gives same errors as !
Profile Likelihood Ratio

–  MINOS errors is bounding box !
around λ(s) contour

–  Profile Likelihood = Likelihood!
minimized w.r.t. all nuisance !
parameters

• Wouter Verkerke, NIKHEF

Parameter of interest 
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NB: Similar to graphical interpretation of variance estimators, but those!
       always assume an elliptical contour from a perfectly parabolic likelihood 



Summary on NPs in confidence intervals

•  Exact confidence intervals are difficult with nuisance parameters
–  Interval should cover for any value of nuisance parameters
–  Technically difficult and significant over-coverage common

•  LHC solution Profile Likelihood ratio à Guaranteed coverage at 
measured values of nuisance parameters only

–  Technically replace likelihood ratio with profile likelihood ratio
–  Computationally more intensive (need to minimize likelihood w.r.t all nuisance 

parameters for each evaluation of the test statistic), but still very tractable

•  Asymptotically confidence intervals constructed with profile 
likelihood ratio test statistics correspond to (MINOS) likelihood 
ratio intervals

–  As distribution of profile likelihood becomes asymptotically independent of θ,!
coverage for all values of θ restored  

• Wouter Verkerke, NIKHEF, 100



Dealing with nuisance parameters in Bayesian intervals

•  Elimination of nuisance parameters in Bayesian interval: Integrate 
over the full subspace of all nuisance parameters;!
!
 !
!
!


•  You are left with posterior pdf for µ

P(µ | x)∝ L(x |µ,

θ )π (µ)π (


θ )( )d


θ∫

µ 

θ 

)ˆ,ˆ( θµ∫ × = ),( θµπ

Credible interval:
area that integrates !
X% of posterior

P(µ | x)∝ L(x |µ) ⋅π (µ)



Computational aspects of dealing with nuisance parameters

•  Dealing with many nuisance parameters is computationally 
intensive in both Bayesian and (LHC) Frequentist approach

•  Profile Likelihood approach
–  Computational challenge = Minimization of likelihood w.r.t. all nuisance 

parameters for every point in the profile likelihood curve
–  Minimization can be a difficult problem, !

e.g. if there are strong correlations, or multiple minima

•  Bayesian approach
–  Computational challenge = Integration of posterior density of all nuisance 

parameters

–  Requires sampling of very potentially very large space.
–  Markov Chain MC and importance sampling techniques can help, but still very 

CPU consuming 

• Wouter Verkerke, NIKHEF



Other procedures that have been tried*

•  Hybrid Frequentist-Bayesian approach (‘Cousins-Highland / ZN’)
–  Integrate likelihood over nuisance parameters!

!
!
!


–  Then treat integrated Lm as test statistic à obtain p-value from its distribution
–  In practice integral is performed using MC integration, so often described as a 

‘sampling method’!
!


–  Method has been shown to have bad coverage

•  Ad-hoc sampling methods of various types.
–  Usually amount to either MC integration or fancy error propagation!

 !
Note that sampling the conditional estimator       !
over sample of θ values obtained from π(θ) !
is just glorified error propagation! 

• Wouter Verkerke, NIKHEF
* But are known to have problems

Lm (µ) = L(µ,

θ )π (


θ )( )d


θ∫

Lm (µ) =
1
N

L(µ,

θi )π (


θi )

MC
∑

ˆ̂µ
θ



How much do answers differ between methods?

These slide discuss !
a ‘prototype’ likelihood!
that statisticians like: !
!
Poisson(Nsig|s+b) ⋅ Poisson(Nctl|τ⋅b)

NB: This is one of the very few!
problems with nuisance parameters!
with can be exactly calculation!




Recent comparisons results from PhyStat 2007

• Wouter Verkerke, NIKHEF

Exact 
solution 



Summary of statistical treatment of nuisance parameters

•  Each statistical method has an associated technique to propagate 
the effect of uncertain NPs on the estimate of the POI

–  Parameter estimation à Joint unconditional estimation
–  Variance estimation à Replace d2L/dp2 with Hessian matrix
–  Hypothesis tests & confidence intervals à Use profile likelihood ratio
–  Bayesian credible intervals à Integration (‘Marginalization’)!



•  Be sure to use the right procedure with the right method
–  Anytime you integrate a Likelihood you are a Bayesian
–  If you are minimizing the likelihood you are usually a Frequentist
–  If you sample something chances are you performing either a (Bayesian) 

Monte Carlo integral, or are doing glorified error propagation

•  Answers can differ substantially between methods!
–  This is not always a problem, but can also be a consequence of a difference in 

the problem statement 
• Wouter Verkerke, NIKHEF


