# RooFit, RooStats – Building, debugging & analyzing statistical models with special focus on profile likelihood

W. Verkerke (Nikhef & University of Amsterdam)

# Roadmap of todays course

- Software 1 Overview: building and analyzing models with RooFit, RooStats & HistFactory
- Modeling 1 Systematic uncertainties, "Profile Likelihood": Counting models with nuisance parameters
- Statistics 1 Treatment of nuisance parameters in statistics inference
- Software 2 Hands-on: Counting models with NPs in RooFit limits & confidence intervals with RooStats
- Modeling 2 Modeling distributions with nuisance parameters, basics of template morphing
- Modeling 3 Understanding complex fits debugging techniques
- Software 3 Hands-on: Modeling (un)binned distributions in RooFit, Combination & reparametrization

# Software 1

# Overview: building and analyzing models with RooFit, RooStats & HistFactory

Wouter Verkerke, NIKHEF

## The HEP analysis workflow illustrated



# All experimental results start with the formulation of a model

- Examples of HEP **physics** models being tested
  - SM with m(top)=172,173,174 GeV → Measurement top quark mass
  - SM with/without Higgs boson  $\rightarrow$  Discovery of Higgs boson
  - SM with composite fermions/Higgs  $\rightarrow$  Measurement of Higgs coupling properties
- Via chain of physics simulation, showering MC, detector simulation and analysis software, a physics model is reduced to a statistical model
- A **statistical** model defines p(data|theory) for all observable outcomes
  - Example of a statistical model for a counting measurement with a known background



# Everything starts with the likelihood

• All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'



Everything starts with the likelihood





#### Higgs combination model





Likelihood Model orders of magnitude more complicated. Describes

- O(100) signal distributions
- O(100) control sample distr.
- O(1000) parameters representing syst. uncertainties

 $L(\vec{N}_{ZZ},\vec{N}_{\tau\tau},\vec{N}_{WW} \mid \mu,\vec{\theta}) = \prod Poisson(N_{ZZ}^{i},...) \cdot \prod Poisson(N_{\tau\tau}^{i},...) \cdot \prod Poisson(N_{WW}^{i},...) \cdot ...$ 

Frequentist confidence interval construction and/or p-value calculation not available as 'ready-to-run' algorithm in ROOT

Wouter Verkerke, NIKHEF

Gaussian + polynomial

Higgs combination model







Wouter Verkerke, NIKHEF

The idea behind the design of RooFit/RooStats/HistFactory

- Modularity, Generality and flexibility
- Step 1 Construct the likelihood function L(x|p)

# RooFit, or RooFit+HistFactory

• Step 2 – Statistical tests on parameter of interest p

Procedure can be Bayesian, Frequentist, or Hybrid), but always based on L(x|p)

# RooStats

• Steps 1 and 2 are conceptually separated, and in Roo\* suit also implemented separately.

The idea behind the design of RooFit/RooStats/HistFactory

- Steps 1 and 2 can be 'physically' separated (in time, or user)
- **Step 1** Construct the likelihood function L(x|p)

# RooFit, or RooFit+HistFactory



Complete description of likelihood model, persistable in ROOT file (RooFit pdf function)

Allows full introspection and a-posteriori editing

• **Step 2** – Statistical tests on parameter of interest *p* 

# RooStats

The benefits of modularity

• Perform different statistical test on exactly the same model



# **RooFit**

WV + D. Kirkby - 1999

#### RooFit – Focus: coding a probability density function

- Focus on one practical aspect of many data analysis in HEP: How do you formulate your p.d.f. in ROOT
  - For 'simple' problems (gauss, polynomial) this is easy
  - But if you want to do unbinned ML fits, use non-trivial functions, or work with multidimensional functions you quickly find that you need some tools to help you



• The RooFit project started in 1999 for data modeling needs for BaBar collaboration initially, publicly available in ROOT since 2003

# RooFit core design philosophy

• Mathematical objects are represented as C++ objects



Wouter Verkerke, NIKHEF

#### Data modeling – Constructing composite objects

• Straightforward correlation between mathematical representation of formula and RooFit code



Wouter Verkerke, NIKHEF

 A special container class owns all objects that together build a likelihood function



Populating a workspace the easy way – "the factory"

• The factory allows to fill a workspace with pdfs and variables using a simplified scripting language



#### Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes



Easy to extend the library: each p.d.f. is a separate C++ class

#### Model building - (Re)using standard components

- Library p.d.f.s can be adjusted on the fly.
  - Just plug in *any function expression* you like as input variable
  - Works universally, even for classes you write yourself



• Maximum flexibility of library shapes keeps library small

### From empirical probability models to simulation-based models

 Large difference between B-physics and LHC hadron physics is that for the latter distributions usually don't follow simple analytical shapes



• But concept of simulation-driven template models can also extent to systematic uncertainties. Instead of empirically chosen 'nuisance parameters' (e.g. polynomial coefs) construct degrees of freedom that correspond to known systematic uncertainties

### The HEP analysis workflow illustrated



## Modeling of shape systematics in the likelihood

• Effect of *any* systematic uncertainty that affects the shape of a distribution can in principle be obtained from MC simulation chain



• Challenge: construct an empirical response function based on the interpolation of the shapes of these three templates.

Need to interpolate between template models

 Need to define 'morphing' algorithm to define distribution s(x) for each value of a





#### Visualization of bin-by-bin linear interpolation of distribution

# Example 2 : binned L with syst

• Example of template morphing systematic in a binned likelihood

$$s_{i}(\alpha,...) = \begin{cases} s_{i}^{0} + \alpha \cdot (s_{i}^{+} - s_{i}^{0}) & \forall \alpha > 0 \\ s_{i}^{0} + \alpha \cdot (s_{i}^{0} - s_{i}^{-}) & \forall \alpha < 0 \end{cases}$$
$$L(\vec{N} \mid \alpha, \vec{s}^{-}, \vec{s}^{0}, \vec{s}^{+}) = \prod_{i} P(N_{i} \mid s_{i}(\alpha, s_{i}^{-}, s_{i}^{0}, s_{i}^{+})) \cdot G(0 \mid \alpha, 1)$$



// Import template histograms in workspace

```
w.import(hs_0,hs_p,hs_m) ;
```

// Construct template models from histograms

```
w.factory("HistFunc::s_0(x[80,100],hs_0)") ;
```

w.factory("HistFunc::s\_p(x,hs\_p)") ;

```
w.factory("HistFunc::s_m(x,hs_m)") ;
```

// Construct morphing model

w.factory("PiecewiseInterpolation::sig(s\_0,s\_,m,s\_p,alpha[-5,5])") ;

```
// Construct full model
w.factory("PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))") ;
```

The structure of an (Higgs) profile likelihood function

• Likelihood describing Higgs samples have following structure



# The structure of an (Higgs) profile likelihood function

• A simultaneous fit of physics samples and (simplified) performance measurements

$$L_{H \to X}(x \mid \mu, \vec{\theta}) = \prod_{i=0...n} L_{phys}(x \mid \mu, \vec{\theta}) \cdot \prod_{i=0...n} L_{control}(x \mid \mu, \vec{\theta}) \cdot L_{sub}(\theta_1) \cdot L_{sub}(\theta_1) \cdot \dots \cdot L_{sub}(\theta_n)$$
  
'Subsidiary measurement n'  
Factorization scale  
a measurement related  
to systematic uncertainties'  
'Subsidiary measurement 2'  
Jet Energy scale' B-tagging eff

# The Workspace

### The workspace

- The workspace concept has revolutionized the way people share and combine analysis
  - Completely factorizes process of building and using likelihood functions
  - You can give somebody an analytical likelihood of a (potentially very complex) physics analysis in a way to the easy-to-use, provides introspection, and is easy to modify.



## Using a workspace



cutoff

argoar

0,500000

inean2

```
// Resurrect model and data
TFile f("model.root") ;
RooWorkspace* w = f.Get("w") ;
RooAbsPdf* model = w->pdf("sum") ;
RooAbsData* data = w->data("xxx") ;
```



Werther Meekerere, NNIKHEF

The idea behind the design of RooFit/RooStats/HistFactory

• Step 1 – Construct the likelihood function L(x|p)



• Step 2 – Statistical tests on parameter of interest p

```
RooWorkspace* w=TFile::Open("L.root")->Get("w") ;
RooAbsPdf* model = w->pdf("model") ;
pdf->fitTo(data) ;
```

### Example RooFit component model for realistic Higgs analysis

Likelihood model describing the ZZ invariant mass distribution *including all possible systematic uncertainties* 



# variables **function objects**

Graphical illustration of function components that call each other


Analysis chain identical for highly complex (Higgs) models

• **Step 1** – Construct the likelihood function L(x|p)



• Step 2 – Statistical tests on parameter of interest p

er Verkerke, NIKHEF

### Workspaces power collaborative statistical modelling

- Ability to persist complete<sup>(\*)</sup> Likelihood models has profound implications for HEP analysis workflow
  - (\*) Describing signal regions, control regions, and including nuisance parameters for all systematic uncertainties)
- Anyone with ROOT (and one ROOT file with a workspace) can re-run any entire statistical analysis out-of-the-box
  - About 5 lines of code are needed
  - Including estimate of systematic uncertainties
- Unprecedented new possibilities for cross-checking results, in-depth checks of structure of analysis
  - Trivial to run variants of analysis (what if 'Jet Energy Scale uncertainty' is 7% instead of 4%). Just change number and rerun.
  - But can also make structural changes a posteri. For example, rerun with assumption that JES uncertainty in forward and barrel region of detector are 100% correlated instead of being uncorrelated.

### Collaborative statistical modelling

- As an experiment, you can effectively build a library of measurements, of which the full likelihood model is preserved for later use
  - Already done now, experiments have such libraries of workspace files,
  - Archived in AFS directories, or even in SVN....
  - Version control of SVN, or numbering scheme in directories allows for easy validation and debugging as new features are added
- Building of <u>combined</u> likelihood models greatly simplified.
  - Start from persisted components. No need to (re)build input components.
  - No need to know how individual components were built, or are internally structured. Just need to know meaning of parameters.
  - Combinations can be produced (much) later than original analyses.
  - Even analyses that were never originally intended to be combined with anything else can be included in joint likelihoods at a later time

### Higgs discovery strategy – add everything together



A small dedicated team of specialists builds a combined likelihood from the inputs. Major discussion point: naming of parameters, choice of parameters for systematic uncertainties (a physics issue, largely) The benefits of modularity

• Technically very straightforward to combine measurements



### RooFit, or RooFit+HistFactory

Wouter Verkerke, NIKHEF

Workspace persistence of *really* complex models works too!

Atlas Higgs combination model (23.000 functions, 1600 parameters) F(x,p) Х Model has ~23.000 function objects, ~1600 parameters Reading/writing of full model takes ~4 seconds ROOT file with workspace is ~6 Mb

With these combined models the Higgs discovery plots were produced...



More benefits of modularity

• Technically very straightforward to reparametrize measurements





An excursion – Collaborative analyses with workspaces

- How can you reparametrize existing Higgs likelihoods in practice?
- Write functions expressions corresponding to new parameterization

$$\sigma(gg \rightarrow H) * BR(H \rightarrow \gamma\gamma) \sim \frac{\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$
  
w.factory("expr::mu\_gg\_func('(KF2\*Kg2)/  
(0.75\*KF2+0.25\*KV2)',  
KF2,Kg2,KV2);

• Import transformation in workspace, edit *existing* model

```
w.import(mu_gg_func) ;
w.factory("EDIT::newmodel(model,mu_gg=mu_gg_gunc)") ;
```

# HistFactory

K. Cranmer, A. Shibata, G. Lewis, L. Moneta, W. Verkerke (2010)

#### HistFactory – structured building of binned template models

- RooFit modeling building blocks allow to easily construct likelihood models that model shape and rate systematics with one or more nuisance parameter
  - Only few lines of code per construction
- Typical LHC analysis required modeling of 10-50 systematic uncertainties in O(10) samples in anywhere between 2 and 100 channels → Need structured formalism to piece together model from specifications. This is the purpose of HistFactory
- HistFactory conceptually similar to workspace factory, but has much higher level semantics
  - Elements represent physics concepts (channels, samples, uncertainties and their relation) rather than mathematical concepts
  - Descriptive elements are represented by C++ objects (like roofit), and can be configured in C++, or alternively from an XML file
- HistFactory builds a RooFit (mathematical) model from a physics model.

### HistFactory elements of a channel

• Hierarchy of concepts for description of one measurement channel



### HistFactory elements of measurement

- One or more channels are combined to form a measurement
  - Along with some extra information (declaration of the POI, the luminosity of the data sample and its uncertainty)



Once physics model is defined, <u>one line of code will turn it into a RooFit likelihood</u> Wouter Verkerke, NIKHEF How is Higgs discovery different from a simple fit?



 Likelihood Model orders of magnitude more complicated. Describ
 0(100) rignal d<sup>\*</sup> outions
 0(100) rignal d<sup>\*</sup> outions

Frequentist confidence interval construction and/or p-value calculation not available as 'ready-to-run' algorithm in ROOT

Wouter Verkerke, NIKHEF

## RooStats

K. Cranmer, L. Moneta, S. Kreiss, G. Kukartsev, G. Schott, G. Petrucciani, WV - 2008

The benefits of modularity

• Perform different statistical test on exactly the same model



Maximum Likelihood estimation as simple statistical analysis

• Step 1 – Construct the likelihood function L(x|p)



#### The need for fundamental statistical techniques



But fundamental techniques can be complicated to execute...

- Example of confidence interval calculation with Neyman construction
  - Need to construct 'confidence belt' using toy MC. Intersection observed data with belt defined interval in POI with guaranteed coverage



 Expensive, complicated procedure, but completely procedural once Likelihood and parameter of interest are fixed
 → Can be wrapped in a tool that runs effectively 'out-of-the-box' Wouter Verkerke, NIKHEF

### Running RooStats interval calculations 'out-of-the-box'

• Confidence intervals calculated with model

| – 'Simple<br>Fit'                                                                                         | <pre>RooAbsReal* nll = myModel-&gt;createNLL(data) ; RooMinuit m(*nll) ; m.migrad() ; m.hesse() ;</pre>                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Feldman</li> <li>Cousins</li> <li>(Frequentist</li> <li>Confidence</li> <li>Interval)</li> </ul> | <pre>FeldmanCousins fc;<br/>fc.SetPdf(myModel);<br/>fc.SetData(data); fc.SetParameters(myPOU);<br/>fc.UseAdaptiveSampling(true);<br/>fc.FluctuateNumDataEntries(false);<br/>fc.SetNBins(100); // number of points to test per parameter<br/>fc.SetTestSize(.1);<br/>ConfInterval* fcint = fc.GetInterval();</pre>                                                            |
| - Bayosian                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |
| (MCMC)                                                                                                    | <pre>UniformProposal up;<br/>MCMCCalculator mc;<br/>mc.SetPdf(w::PC);<br/>mc.SetData(data); mc.SetParameters(s);<br/>mc.SetProposalFunction(up);<br/>mc.SetNumIters(100000); // steps in the chain<br/>mc.SetTestSize(.1); // 90% CL<br/>mc.SetNumBins(50); // used in posterior histogram<br/>mc.SetNumBurnInSteps(40);<br/>ConfInterval* mcmcint = mc.GetInterval();</pre> |



Offset advanced control over details of statistical procedure (use of CLS, choice of test statistic, boundaries...)

### RooStats class structure



### Summary

- RooFit and RooStats allow you to perform advanced statistical data analysis
  - LHC Higgs results a prominent example
- RooFit provides (almost) limitless model building facilities
  - Concept of persistable model workspace allows to separate model building and model interpretation
  - HistFactory package introduces structured model building for binned likelihood template models that are common in LHC analyses
- Concept of RooFit Workspace has completely restructured HEP analysis workflow with 'collaborative modeling'
- RooStats provide a wide set of statistical tests that can be performed on RooFit models
  - Bayesian, Frequentist and Likelihood-based test concepts





Wouter Verkerke, NIKHEF

### **Modeling 1**

### Systematic uncertainties, "Profile Likelihood":

### Counting models with nuisance parameters

Wouter Verkerke, NIKHEF

### Most statistics textbooks deal with the *ideal* experiment

- The "only thing" you need to do (as an experimental physicist) is to formulate the likelihood function for your measurement
- For an ideal experiment, where signal and background are assumed to have perfectly known properties, this is trivial



• So far only considered a single parameter in the likelihood: the physics parameter of interest, usually denoted as  $\mu$ 

### The imperfect experiment

- In realistic measurements many effect that we don't control exactly influence measurements of parameter of interest
- How do you model these uncertainties in the likelihood?



Signal and background predictions are affected by (systematic) uncertainties

### Adding parameters to the model

• We can describe uncertainties in our model by adding new parameters of which the value is uncertain



 $L(x \mid f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$ 

 These additional model parameters are not 'of interest', but we need them to model uncertainties → 'Nuisance parameters'

### What are the nuisance parameters of your *physics model?*

• *Empirical* modeling of uncertainties, e.g. polynomial for background, Gaussian for signal, is easy to do, but may lead to hard questions



 $L(x \mid f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$ 

- Is your model correct? (Is true signal distr. captured by a Gaussian?)
- Is your model flexible enough? (4<sup>th</sup> order polynomial, or better 6<sup>th</sup>)?
- How do model parameters connect to known detector/theory uncertainties in your distribution?
  - what conceptual uncertainty do your parameters represent?

### The simulation workflow and origin of uncertainties



### Typical systematic uncertainties in HEP

- Detector-simulation related
  - "The Jet Energy scale uncertainty is 5%"
  - "The b-tagging efficiency uncertainty is 20% for jets with  $p_T < 40$ "
- Physics/Theory related
  - The top cross-section uncertainty is 8%
  - "Vary the factorization scale by a factor 0.5 and 2.0 and consider the difference the systematic uncertainty"
  - "Evaluate the effect of using Herwig and Pythia and consider the difference the systematic uncertainty"
- MC simulation statistical uncertainty
  - Effect of (bin-by-bin) statistical uncertainties in MC samples

### What can you do with systematic uncertainties

- As most of the typical systematic prescriptions have no immediately apparent parametric formulation in your likelihood, common approach is 'vary setting, rerun analysis, observe the difference'
- This common 'naïve' approach to assess effect of systematic uncertainties amounts to simple error propagation
- Error propagation procedure in a nutshell
  - Make nominal measurement (using your favorite statistical inference procedure)
  - Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by '1 sigma' up and down) Redo measurement procedure for each shift
  - Consider propagated effect of shifted setting the systematic uncertainty

$$\mu = \mu_{nom} \pm \sigma_{stat} \pm (\mu_{syst}^{up} - \mu_{syst}^{down}) / 2 \pm \dots$$
From statistical analysis Systematic uncertainty from error propagation

•Wouter Verkerke, NIKHEF

### Pros and cons of the 'naïve' approach

#### • Pros

- It's easy to do
- It results in a seemingly easy-to-interpret table of systematics

#### • Cons

- Uncorrelated source of systematic uncertainty can have correlated effect on measurement → Completely ignored
- Magnitude of stated systematic uncertainty may be incompatible with measurement result → Completely ignored
- You lost the connection with fundamental statistical techniques

   (i.e. evaluation of systematic uncertainties is completely detached from
   statistical procedure used to estimate physics quantity of interest) → No
   prescription to make confidence intervals, Bayesian posteriors etc in this way
- No calibrated probabilistic statements possible (95% C.L.)
- Profiling' → Incorporate a description of systematic uncertainties in the likelihood function that is used in statistical procedures

Everything starts with the likelihood



Introducing uncertainties – a non-systematic example



• The original model (with fixed *b*)

• Now consider *b* to be uncertain

### $L(N|s) \xrightarrow{} L(N|s,b)$

 The experimental data contains insufficient to constrain both s and b → Need to add an additional measurement to constrain b
 •Wouter Verkerke, NIKHEF

### The sideband measurement

 Suppose your data in reality looks like this →



Can estimate level of background in the 'signal region' from event count in a 'control region' elsewhere in phase space

$$L_{SR}(s,b) = Poisson(N_{SR} | s+b)$$
$$L_{CR}(b) = Poisson(N_{CR} | \tilde{\tau} \cdot b)$$

NB: Define parameter 'b' to represents the amount of bkg is the SR.

Scale factor  $\tau$  accounts for difference in size between SR and CR

"Background uncertainty constrained from the data"

• Full likelihood of the measurement ('simultaneous fit')

$$L_{full}(s,b) = Poisson(N_{SR} | s+b) \cdot Poisson(N_{CR} | \tilde{\tau} \cdot b)$$
Generalizing the concept of the sideband measurement

 Background uncertainty from sideband clearly clearly not a 'systematic uncertainty'

 $L_{full}(s,b) = Poisson(N_{SR} | s+b) \cdot Poisson(N_{CR} | \tilde{\tau} \cdot b)$ 

 Now consider scenario where b is not measured from a sideband, but is taken from MC simulation with an 8% cross-section 'systematic' uncertainty

'Measured background rate by MC simulation'

$$L_{full}(s,b) = Poisson(N_{SR} | s+b) \cdot Gauss(\tilde{b} | b, 0.08)$$

'Subsidiary measurement' of background rate

- We can model this in the same way, because the cross-section uncertainty is also (ultimately) the result of a measurement

Generalize: 'sideband'  $\rightarrow$  'subsidiary measurement'

# What is a systematic uncertainty?

- Concept & definitions of 'systematic uncertainties' originates from physics, not from fundamental statistical methodology.
  - E.g. Glen Cowans (excellent) 198pp book "statistical data analysis" does not discuss systematic uncertainties at all
- A common definition is
  - "Systematic uncertainties are all uncertainties that are not directly due to the statistics of the data"
- But the notion of 'the data' is a key source of ambiguity:
  - does it include control measurements?
  - does it include measurements that were used to perform basic (energy scale) calibrations?

# Typical systematic uncertainties in HEP

- Detector-simulation related
  - "The Jet Energy scale uncertainty is 5%"
  - "The b-tagging efficiency uncertainty is 20% for jets with  $p_T < 40$ "
- Physics/Theory related
  - The top cross-section uncertainty is 8%
  - "Vary the factorization scale by a factor 0.5 and 2.0 and consider the difference the systematic uncertainty"
  - "Evaluate the effect of using Herwig and Pythia and consider the difference the systematic uncertainty"
- MC simulation statistical uncertainty
  - Effect of (bin-by-bin) statistical uncertainties in MC samples

Subsidiary measurement is an actual measurement → conceptually similar to a 'sideband' fit

Subsidiary measurement unclear, but origin of prescription may well be another measurement (if yes, like sideband, if no, what is source of info?)

Subsidiary measurement is a Poisson counting experiment (but now in MC events), otherwise conceptually identical to a 'sideband/fitter Verkerke, NIKHEF Typical systematic uncertainties in HEP



Modeling a detector calibration uncertainty

 $L_{full}(s,b) = Poisson(N_{SR} \mid s+b) \cdot Gauss(\tilde{b} \mid b, 0.08)$ 





Modeling a detector calibration uncertainty

• Simplify expression by renormalizing "subsidiary measurement"



The response function as empirical model of full simulation

$$L(N,0 | s,\alpha) = Poisson(N | s + b(\alpha)) \cdot Gauss(0 | \alpha,1)$$

- Note that the response function is generally not linear, but can in principle *always be determined by your full simulation chain* 
  - But you cannot run your full simulation chain for any arbitrary 'systematic uncertainty variation' → Too much time consuming
  - Typically, run full MC chain for nominal and  $\pm 1\sigma$  variation of systematic uncertainty, and approximate response for other values of NP with interpolation
  - For example run at nominal JES and with JES shifted up and down by  $\pm 5\%$



# What is a systematic uncertainty?

- It is an uncertainty in the Likelihood of your physics measurement that is characterized deterministically, up to a set of parameters, of which the true value is unknown.
- A fully specified systematic uncertainty defines
  - 1: A set of one or more parameters of which the true value is unknown,
  - 2: A response model that describes the effect of those parameters on the measurement (sampled from full simulation, and interpolation)
  - 3: A subsidiary measurement of the parameters that constrains the values the parameters can take (implies a specific distribution: Gaussian (*default, CLT*), Poisson (*low-stats counting*), or otherwise)

Names and conventions - 'profiling' & 'constraints'

• The full likelihood function of the form

 $L(N,0 | s,\alpha) = Poisson(N | s + b(\alpha)) \cdot Gauss(0 | \alpha,1)$ 

is usually referred to by physicists as a 'profile likelihood', and systematics are said to be 'profiled' when incorporated this way

- Note: statisticians use the word profiling for something else
- Physicists often refer to the subsidiary measurement as a 'constraint term'
  - This is correct in the sense that it constrains the parameter α, but this labeling commonly lead to mistaken statements (e.g. that it is a pdf for α)
  - But it is *not* a pdf in the NP



# Names and conventions

- The 'subsidiary measurement' as simplified form of the 'full calibration measurement' also illustrates another important point
  - The full likelihood is simply a *joint likelihood of a physics measurement and a calibration measurement* where both terms are treated on equal footing in the statistical procedure
  - In a perfect world, not bound by technical modelling constraints you would use this likelihood

 $L(N, \vec{y} \mid s, \alpha) = Poisson(N \mid s + b(1 + 0.1\alpha)) \cdot L_{JES}(\vec{y} \mid \alpha, \vec{\theta})$ 

where  $L_{JES}$  is the full calibration measurement as performed by the Jet calibration group, based on a dataset y, and which may have other parameters  $\theta$  specific to the calibration measurement.

Since we are bound by technical constrains, we substitute L<sub>JES</sub> with simplified (Gaussian) form, but the statistical treatment and interpretation remains the same

# MC statistical uncertainties as systematic uncertainty

- Another example of modeling a systematic uncertainty: MC statistical uncertainty
- Follow same procedure again as before:
  - Define response function (this is trivial for MC statistics: it is the luminosity ratio of the MC sample and the data sample)
  - Define distribution for the 'subsidiary measurement' This is a Poisson distribution – since MC simulation is also a Poisson process
  - Construct full likelihood ('profile likelihood')

$$L(N, N_{MC} | s, b) = Poisson(N | s + b) \cdot Poisson(N_{MC} | \tau \cdot b)$$

Constant factor  $\tau = L(MC)/L(data)^{/}$ 

• Note uncanny similarity to full likelihood of a sideband measurement!

$$L(N, N_{ctl} | s, b) = Poisson(N | s + b) \cdot Poisson(N_{ctl} | \tau \cdot b)$$

# Modeling multiple systematic uncertainties

- Introduction of multiple systematic uncertainties presents no special issues
- Example JES uncertainty plus generator ISR uncertainty

$$L(N, 0 | s, \alpha_{JES}, \alpha_{ISR}) = P(N | s + b(1 + 0.1\alpha_{JES} + 0.05\alpha_{ISR})) \cdot G(0 | \alpha_{JES}, 1) \cdot G(0 | \alpha_{ISR}, 1)$$

Joint response function for both systematics

One subsidiary measurement for each source of uncertainty

- A brief note on correlations
  - Word "correlations" often used sloppily proper way is to think of correlations of parameter estimators. Likelihood defines parameters  $\alpha_{JES}$ ,  $\alpha_{ISR}$ . The (ML) estimates of these are denoted  $\hat{\alpha}_{IES}$ ,  $\hat{\alpha}_{ISR}$
  - The ML estimators of  $\hat{\alpha}_{JES}$ ,  $\hat{\alpha}_{ISR}$  using the Likelihood of the subsidiary measurements are uncorrelated (since the product factorize in this example)
  - The ML estimators of  $\hat{\alpha}_{JES}$ ,  $\hat{\alpha}_{ISR}$  using the full Likelihood may be correlated. This is due to physics modeling effects encoded in the joint response function

# Modeling systematic uncertainties in multiple channels

- Systematic effects that affect multiple measurements should be modeled coherently.
  - Example Likelihood of two Poisson counting measurements

$$L(N_A, N_B | s, \alpha_{JES}) = P(N_A | s \cdot f_A + b_A (1 + 0.1\alpha_{JES})) \cdot P(N_B | s \cdot f_B + b_B (1 - 0.3\alpha_{JES})) \cdot G(0 | \alpha_{JES}, 1) \cdot JES \text{ response} \qquad JES \text{ function for for subsidiary channel A} \qquad JES \text{ response } JES \text{ function for subsidiary channel B} \text{ measurement}$$

- Effect of changing JES parameter  $\alpha_{JES}$  coherently affects both measurement.
- Magnitude and sign effect does not need to be same, this is dictated by the physics of the measurement

# **Statistics 1**

# treatment of nuisance parameters in statistics inference

Wouter Verkerke, NIKHEF

The statisticians view on nuisance parameters

• In general, our model of the data is not perfect



- Can improve modeling by including additional adjustable parameters
- Goal: some point in the parameter space of the enlarged model should be "true"
- Presence of nuisance parameters decreases the sensitivity of the analysis of the parameter(s) of interest

Treatment of nuisance parameters in parameter estimation

- In POI parameter estimation, the effect of NPs incorporated through unconditional minimization
  - I.e. minimize Likelihood w.r.t all parameter simultaneously.
- Simple example with 2-bin Poisson counting experiment



# Treatment of nuisance parameters in variance estimation

- Maximum likelihood estimator of parameter variance is based on 2<sup>nd</sup> derivative of Likelihood
  - For multi-parameter problems this 2nd derivative is generalized by the **Hessian Matrix** of partial second derivatives

$$\hat{\sigma}(p)^{2} = \hat{V}(p) = \left(\frac{d^{2}\ln L}{d^{2}p}\right)^{-1} \qquad \hat{\sigma}(p_{i})^{2} = \hat{V}(p_{ii}) = \left(H^{-1}\right)_{ii}$$

$$H(f) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

- For multi-parameter likelihoods estimate of covariance V<sub>ij</sub> of pair of 2 parameters in addition to variance of individual parameters
  - Usually re-expressed in terms dimensionless correlation coefficients p

$$V_{ij} = \rho_{ij} \sqrt{V_{ii} V_{jj}}$$

Treatment of nuisance parameters in variance estimation

• Effect of NPs on variance estimates visualized



Uncertainty on background increases uncertainty on signal

•Wouter Verkerke, NIKHEF

# Treatment of NPs in hypothesis testing and conf. intervals

- We've covered frequentist hypothesis testing and interval calculation using likelihood ratios based on a likelihood with a single parameter (of interest) L(µ)
  - Result is p-value on hypothesis with given  $\mu$  value, or
  - Result is a confidence interval [µ\_,µ\_] with values of µ for which p-value is at or above a certain level (the confidence level)
- How do you do this with a likelihood  $L(\mu, \theta)$  where  $\theta$  is a nuisance parameter?
  - With a test statistics  $q_u$ , we calculate p-value for hypothesis  $\theta$  as

$$p_{\mu} = \int_{q_{\mu,obs}}^{\infty} f(q_{\mu} \mid \mu, \theta) dq_{\mu}$$



But what values of θ do we use for f(q<sub>µ</sub>|µ,θ)?
 Fundamentally, we want to reject µ only if p<α for all θ</li>
 → Exact confidence interval

### Hypothesis testing & conf. intervals with nuisance parameters

- The goal is that the parameter of interest should be covered at the stated confidence for every value of the nuisance parameter
- if there is any value of the nuisance parameter which makes the data consistent with the parameter of interest, that value of the POI should be considered:
  - e.g. don't claim discovery if any background scenario is compatible with data
- But: technically very challenging and significant problems with over-coverage
  - Example: how broadly should 'any background scenario' be defined? Should we include background scenarios that are clearly incompatible with the observed data?

The profile likelihood construction as compromise

• For LHC the following prescription is used:

```
νPs
Given L(μ,θ)
POI →
```

perform hypothesis test for each value of  $\mu$  (the POI),

using values of nuisance parameter(s)  $\theta$  that best fit the data under the hypothesis  $\mu$ 

• Introduce the following notation

 $\hat{\hat{\theta}}(\mu)$  M.L. estimate of  $\theta$  for a given value of  $\mu$  (i.e. a conditional ML estimate)

- The resulting confidence interval will have exact coverage for the points  $(\mu, \hat{\theta}(\mu))$ 
  - Elsewhere it may overcover or undercover (but this can be checked)

# The profile likelihood ratio

• With this prescription we can construct the profile likelihood ratio as test statistic



• NB: value profile likelihood ratio does *not* depend on  $\theta$ 

#### Profiling illustration with one nuisance parameter



#### Profile scan of a Gaussian plus Polynomial probability model



#### Profile scan of a Gaussian plus Polynomial probability model



#### PLR Confidence interval vs MINOS Measurement = $t_{\mu}(x_{obs},\mu)$ is now a function of µ Confidence belt now $t_{\mu}(x,\mu)$ $t_{\mu}(x,\mu)$ range in PLR 7 ىلىلىر oarameter µ Φ oarameter 6 5 5 4 3 3 2 2 1 1 0 3 5 6 2 0 2 5 6 Profile Likelihood Ratio Profile Likelihood Ratio A Roo Plot of "LLR" Events / (0.1) 104 103 NB: asymptotically, distribution is also independent of true values of $\theta$ Asymptotically, 102 $f(t_{\mu};\Lambda) = \frac{1}{2\sqrt{t_{\mu}}} \frac{1}{\sqrt{2\pi}} \left[ \exp\left(-\frac{1}{2} \left(\sqrt{t_{\mu}} + \sqrt{\Lambda}\right)^2\right) + \exp\left(-\frac{1}{2} \left(\sqrt{t_{\mu}} - \sqrt{\Lambda}\right)^2\right) \right]$ distribution is identical for all µ

 $\Lambda = rac{(\mu-\mu')^2}{\sigma^2} \; .$ 

# Link between MINOS errors and profile likelihood



- Note that MINOS algorithm in MINUIT gives same errors as Profile Likelihood Ratio
  - MINOS errors is bounding box around  $\lambda(s)$  contour
  - Profile Likelihood = Likelihood minimized w.r.t. all nuisance parameters
  - NB: Similar to graphical interpretation of variance estimators, but those always assume an elliptical contour from a perfectly parabolic likelihood

# Summary on NPs in confidence intervals

- Exact confidence intervals are difficult with nuisance parameters
  - Interval should cover for any value of nuisance parameters
  - Technically difficult and significant over-coverage common
- LHC solution Profile Likelihood ratio → Guaranteed coverage at measured values of nuisance parameters only
  - Technically replace likelihood ratio with profile likelihood ratio
  - Computationally more intensive (need to minimize likelihood w.r.t all nuisance parameters for each evaluation of the test statistic), but still very tractable
- Asymptotically confidence intervals constructed with profile likelihood ratio test statistics correspond to (MINOS) likelihood ratio intervals
  - As distribution of profile likelihood becomes asymptotically independent of  $\theta$ , coverage for all values of  $\theta$  restored

Dealing with nuisance parameters in Bayesian intervals

• Elimination of nuisance parameters in Bayesian interval: Integrate over the full subspace of all nuisance parameters;

$$P(\mu \mid x) \propto L(x \mid \mu) \cdot \pi(\mu)$$
  
$$P(\mu \mid x) \propto \int \left( L(x \mid \mu, \vec{\theta}) \pi(\mu) \pi(\vec{\theta}) \right) d\vec{\theta}$$

• You are left with posterior pdf for  $\boldsymbol{\mu}$ 



#### Computational aspects of dealing with nuisance parameters

- Dealing with many nuisance parameters is computationally intensive in both Bayesian and (LHC) Frequentist approach
- Profile Likelihood approach
  - Computational challenge = *Minimization* of likelihood w.r.t. all nuisance parameters for every point in the profile likelihood curve
  - Minimization can be a difficult problem,
     e.g. if there are strong correlations, or multiple minima
- Bayesian approach
  - Computational challenge = Integration of posterior density of all nuisance parameters
  - Requires sampling of very potentially very large space.
  - Markov Chain MC and importance sampling techniques can help, but still very CPU consuming

Other procedures that have been tried\*

- Hybrid Frequentist-Bayesian approach ('Cousins-Highland / Z<sub>N</sub>')
  - Integrate likelihood over nuisance parameters

$$L_m(\mu) = \int \Bigl( L(\mu,\vec{\theta}) \pi(\vec{\theta}) \Bigr) d\vec{\theta}$$

- Then treat integrated  $L_m$  as test statistic  $\rightarrow$  obtain p-value from its distribution
- In practice integral is performed using MC integration, so often described as a 'sampling method'  $L_m(\mu) = \frac{1}{N} \sum_{i=1}^{N} L(\mu, \vec{\theta}_i) \pi(\vec{\theta}_i)$
- Method has been shown to have bad coverage
- Ad-hoc sampling methods of various types.
  - Usually amount to either MC integration or fancy error propagation

Note that sampling the conditional estimator  $\hat{\hat{\mu}}_{\mu}$ over sample of  $\theta$  values obtained from  $\pi(\theta)$ is just glorified error propagation!

•Wouter Verkerke, NIKHEF

\* But are known to have problems

# How much do answers differ between methods?

| A Prototype Problem                                                                                                                   | OOKHAVEN<br>INAL LABORATORY                                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| What is significance Z of an observation $x = 178$ ever<br>signal like region, if my expected background $b = 10$<br>10% uncertainty? | ts in a<br>0 with a                                                     |  |  |  |
| <ul> <li>if you use the ATLAS TDR formula Z<sub>5</sub>'=5.5</li> <li>if you use Cousins-Highland Z<sub>N</sub>=5.0</li> </ul>        |                                                                         |  |  |  |
| The question seems simple enough, but it is not ac well-posed                                                                         | ually                                                                   |  |  |  |
| • what do I mean by 10% background uncertainty                                                                                        |                                                                         |  |  |  |
| Typically, we consider an auxiliary measurement $y$ estimate background (Type I systematic)                                           | sed to                                                                  |  |  |  |
| + eg: a sideband counting experiment where back in sideband is a factor $	au$ bigger than in signal re                                | gion Example Sideband Measurement BROOKHAW                              |  |  |  |
| $L_P(x, y \mu, b) = Pois(x \mu + b) \cdot Pois(y \tau b).$                                                                            | Sideband measurement used                                               |  |  |  |
| Kyle Cranmer (BNL)         PhyStat 2007, CERN, June 26, 2007                                                                          | to extrapolate / interpolate $z_{2000}$                                 |  |  |  |
| These slide discuss                                                                                                                   | signal-like region $\frac{1}{2}$                                        |  |  |  |
| a 'prototype' likelihood                                                                                                              |                                                                         |  |  |  |
| that statisticians like:                                                                                                              | For now ignore uncertainty in some extrapolation.                       |  |  |  |
| Poisson(N <sub>sig</sub>  s+b) · Poisson(N <sub>ctl</sub>  τ·b)                                                                       |                                                                         |  |  |  |
| NB: This is one of the very few                                                                                                       | $m_{\gamma\gamma}$ (Ge <sup>1</sup> )                                   |  |  |  |
| problems with nuisance parameters                                                                                                     | $L_P(x, y \mu, b) = Pois(x \mu + b) \cdot Pois(y \tau b).$              |  |  |  |
| with can be exactly calculation                                                                                                       | Kyle Cranmer (BNL)         PhyStat 2007, CERN, June 26, 2007         14 |  |  |  |

# Recent comparisons results from PhyStat 2007

#### Comparison of Methods for Prototype Problem

In my contribution to PhyStat2005, >130 I considered this problem and 120 compared the coverage for several 110 methods 100

See Linnemann's PhyStat03 paper

#### Major results:

Kyle Cranmer (BNL)

- Cousins-Highland result (Z<sub>N</sub>) badly under-covers (only 4.2σ)!
  - rate of Type I error is 110 times higher than stated!
  - much less luminosity required

Profile Likelihood Ratio (MINUIT/ MINOS) works great out to 5σ!



Figure 7. A comparison of the various methods critical boundary  $x_{crit}(y)$  (see text). The concentric ovals represent contours of  $L_G$  from Eq. 15.

| roduirod                       |                       |                 |                |                   |      |
|--------------------------------|-----------------------|-----------------|----------------|-------------------|------|
| requireu                       | Method                | $L_G (Z\sigma)$ | $L_P(Z\sigma)$ | $x_{crit}(y=100)$ |      |
|                                | No Syst               | 3.0             | 3.1            | 150               |      |
|                                | $Z_{5'}$              | 4.1             | 4.1            | 171               |      |
|                                | $Z_N$ (Sec. 4.1)      | 4.2             | 4.2            | 178               |      |
| (MINUII/                       | ad hoc                | 4.6             | 4.7            | <u>188</u> Exa    | ict  |
| to Earl                        | $Z_{\Gamma} = Z_{Bi}$ | 4.9             | 5.0            | 185 SO            | tion |
| 10 50!                         | profile $\lambda_P$   | 5.0             | 5.0            | 185               |      |
| '                              | profile $\lambda_G$   | 4.7             | 4.7            | $\sim 182$        |      |
| Statistics Forum, May 11, 2007 |                       |                 |                |                   |      |

# Summary of statistical treatment of nuisance parameters

- Each statistical method has an associated technique to propagate the effect of uncertain NPs on the estimate of the POI
  - Parameter estimation  $\rightarrow$  Joint unconditional estimation
  - Variance estimation  $\rightarrow$  Replace d<sup>2</sup>L/dp<sup>2</sup> with Hessian matrix
  - Hypothesis tests & confidence intervals  $\rightarrow$  Use profile likelihood ratio
  - Bayesian credible intervals  $\rightarrow$  Integration ('Marginalization')
- Be sure to use the right procedure with the right method
  - Anytime you integrate a Likelihood you are a Bayesian
  - If you are minimizing the likelihood you are usually a Frequentist
  - If you sample something chances are you performing either a (Bayesian)
     Monte Carlo integral, or are doing glorified error propagation
- Answers can differ substantially between methods!
  - This is not always a problem, but can also be a consequence of a difference in the problem statement