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Goals of this hands-on session

1.   Learn basics of RooFit model building
–  Learn to use to workspace factory to quickly specify models
–  Focus on counting models this morning – these are quick and easy

2.  Learn basics of RooStats limit & interval calculators
–  You can run these on the counting models your built in part one

•  We only have 90 minutes – so tailored approach to that
–  First some introductory slides to familiarize you with the syntax of RooFit 

model building and RooFit model usage
–  10 prepared macros that are fully functional and execute progressively 

complex tasks
–  You start from a functional working point – goal of your exercise time is to 

understand what they do and how they do it and work on some extensions 
and modifications of the macros
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Populating a workspace the easy way – “the factory”

•  Creating many objects can be tedious: The workspace factory allows to fill a 
workspace with pdfs and variables using a simplified scripting language

RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 
w.factory(“RooGaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace

Gauss(x,µ,σ) 



Factory and Workspace

•  One C++ object per math symbol provides "
ultimate level of control over each objects functionality, but results 
in lengthy user code for even simple macros

•  Solution: add factory that auto-generates objects from a math-like 
language

Gaussian::f(x[-10,10],mean[5],sigma[3]) 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar mean(“mean”,”mean”,5) ; 

RooRealVar sigma(“sigma”,”sigma”,3)  ; 

RooGaussian f(“f”,”f”,x,mean,sigma) ; 
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Factory and Workspace
•  This is not the same as reinventing Mathematica!"

String constructs an expression in terms of C++ objects, rather than being the 
expression

–  Objects can be tailored after construction through object pointers
–  For example: tune parameters and algorithms of numeric integration to be 

used with a given object
•  Implementation in RooFit: "

Factory makes objects, Workspace owns them

RooWorkspace w(“w”) ; 
w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ; 
 
w.Print(“t”) ; 
 
variables 
--------- 
(mean,sigma,x) 
 
p.d.f.s 
------- 
RooGaussian::f[ x=x mean=mean sigma=sigma ] = 0.249352 
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Accessing the workspace contents

•  Workspace contents can be obtained through accessor methods

// retrieve a probability density function 
RooAbsPdf* g = w.pdf(“g”) ; 
  

// retrieve a regular function 

RooAbsReal* f = w.function(“f”) ; 
 

// retrieving a variable 

RooRealVar* x = w.var(“x”) ; 
 

// retrieving a dataset 

RooAbsData* data = w.data(“observed”) ; 
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Factory language

•  The factory language has a 1-to-1 mapping to the constructor 
syntax of RooFit classes

–  With a few handy shortcuts for variables"


•  Creating variables

•  Creating pdfs (and functions)"
"
"


–  Can always omit leading ‘Roo’
–  Curly brackets translate to set or list argument  (depending on context)

x[-10,10]   // Create variable with given range, init val is midpoint 
x[5,-10,10] // Create variable with initial value and range 

x[5]        // Create initially constant variable  

 

Gaussian::g(x,mean,sigma) à RooGaussian(“g”,”g”,x,mean,sigma) 
Polynomial::p(x,{a0,a1}) à RooPolynomial(“p”,”p”,x”,RooArgList(a0,a1)); 
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Factory language

•  Composite expression are created by nesting statements
–  No limit to recursive nesting

•  You can also use numeric constants whenever an unnamed 
constant is needed"


•  Names of nested function objects are optional
•  SUM syntax explained later

Gaussian::g(x[-10,10],mean[-10,10],sigma[3])  
    à  x[-10,10]  

 mean[-10,10] 

 sigma[3] 

 Gaussian::g(x,mean,sigma) 

 
  Gaussian::g(x[-10,10],0,3)   
 

 
  SUM::model(0.5*Gaussian(x[-10,10],0,3),Uniform(x)) ;   
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Factory language

•  Interpreted function expressions allow to customize existing 
probability density functions

•  Generally: "
types starting with UPPER-CASE are Probability Density Functions, 
types starting with lower-case      are regular functions



// construct Nexp=mu*S+B (a function) 
expr::Nexp(‘mu*S+B’,mu[0,5],S[50],B[50])  
 

// construct a Poisson probability model describing 
// the distribution of Nobs given Nexp  

Poisson::p(Nobs[0,1000],Nexp) ; 
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Model building – (Re)using standard components

•  List of frequently used pdfs and their factory spec"

Gaussian       Gaussian::g(x,mean,sigma) 
Breit-Wigner            BreitWigner::bw(x,mean,gamma) 
Landau           Landau::l(x,mean,sigma) 
Exponential            Exponential::e(x,alpha) 
Polynomial   Polynomial::p(x,{a0,a1,a2}) 
Chebychev     Chebychev::p(x,{a0,a1,a2}) 
Kernel Estimation              KeysPdf::k(x,dataSet) 
Poisson          Poisson::p(x,mu) 
Voigtian       Voigtian::v(x,mean,gamma,sigma) 
(=BW⊗G)
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Model building – (Re)using standard components

•  Library p.d.f.s can be adjusted on the fly.
–  Just plug in any function expression you like as input variable
–  Works universally, even for classes you write yourself

•  Maximum flexibility of library shapes keeps library small

g(x,y;a0,a1,s) 
g(x;m,s) m(y;a0,a1) 

RooPolyVar  m(“m”,y,RooArgList(a0,a1)) ; 
RooGaussian g(“g”,”gauss”,x,m,s) ; 



Basics – Creating and plotting a Gaussian p.d.f 

// Build Gaussian PDF 
w.factory(“Gaussian::gauss(x[-10,10],mean[-10,10],sigma[3,1,10]”) 
 
// Plot PDF 
RooPlot* frame = w.var(“x”)->frame() ; 
w.pdf(“gauss”)->plotOn(xframe) ; 
xframe->Draw() ; 
   

Plot range taken from limits of x 

Axis label from gauss title 

Unit  
normalization 

Setup gaussian PDF and plot 

A RooPlot is an empty frame 
capable of holding anything 
plotted versus it variable 
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Basics – Generating toy MC events

// Generate an unbinned toy MC set 
RooDataSet* data = w.pdf(“gauss”)->generate(w::x,10000) ;   
 
// Generate an binned toy MC set 
RooDataHist* data =  
             w.pdf(“gauss”)->generateBinned(w::x,10000) ;   
 
// Plot PDF 

RooPlot* xframe =  
  w.var(“x”)->frame() ; 
data->plotOn(xframe) ; 

xframe->Draw() ; 

Generate 10000 events from Gaussian p.d.f and show distribution 

Can generate both binned and 
unbinned datasets 
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Basics – ML fit of p.d.f to unbinned data

// ML fit of gauss to data 

w.pdf(“gauss”)->fitTo(*data) ; 
(MINUIT printout omitted) 
 
// Parameters if gauss now 
// reflect fitted values 
w.var(“mean”)->Print() 
RooRealVar::mean = 0.0172335 +/- 0.0299542  
w.var(“sigma”)->Print() 
RooRealVar::sigma = 2.98094  +/- 0.0217306 
 

// Plot fitted PDF and toy data overlaid 

RooPlot* xframe = w.var(“x”)->frame() ; 

data->plotOn(xframe) ; 

w.pdf(“gauss”)->plotOn(xframe) ; 

PDF 
automatically 
normalized 
to dataset 
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Basics – ML fit of p.d.f to unbinned data

•  Can also choose to save full detail of fit
RooFitResult* r = w::gauss.fitTo(*data,Save()) ; 
 
r->Print() ; 
  RooFitResult: minimized FCN value: 25055.6,  
                estimated distance to minimum: 7.27598e-08 
                coviarance matrix quality:  
                Full, accurate covariance matrix 
 
    Floating Parameter    FinalValue +/-  Error    
  --------------------  -------------------------- 
                  mean    1.7233e-02 +/-  3.00e-02 
                 sigma    2.9809e+00 +/-  2.17e-02 
 
 
r->correlationMatrix().Print() ; 
 
2x2 matrix is as follows 
 
     |      0    |      1    | 
------------------------------- 
   0 |          1   0.0005869  
   1 |  0.0005869           1  
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Further practical information

•  Most useful (in my experience) tutorial macros
–  In every ROOT installation, in directory $ROOTSYS/tutorials/roofit"

you will find 86 tutorial macros each demonstrating one important"
task or feature of RooFit

•  Class reference on ROOT website
–  Most useful for syntax of key classes like RooAbsPdf, RooWorkspace etc…
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Exercise 1 

•  Macro ex01_expore_Poisson.C
–  Construct a Poisson probability model P(N|μS+B) with S,B fixed
–  Fits model to 25 observed event à returns fitted value of μ
–  Alternatively, explicitly constructs the likelihood L(25|μ) and visualizes that
–  Also visualized on the same frame is L(μ)/L(μ-hat)

•  Questions & explorations
–  Do you understand the difference between the likelihood and the likelihood 

ratio curve

–  How does the interval defined by the rise of the likelihood ratio by half a unit 
compare to the MINOS error

–  Can you construct the 95% interval from the plot? 
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Exercise 2

•  Macro ex02_build_Poisson.C
–  Construct the same Poisson model as ex01
–  Constructs a RooStats ModelConfig object that"

describes a uniquely defined statistical problem definition
–  Saves the model to a workspace in a ROOT file


•  Questions & explorations
–  Open the workspace in a clean root session after you ran macro ex02,"

retrieve the Poisson model and the observed data from it and rerun the fit"
on the command line

–  Plot the Poisson distribution on a frame (see code in Ex01)
–  Change the value of mu and plot the Poisson distribution for that!

new mu value on the same frame. Note that you will have to recall !
frame->Draw() after each addition to visualize it on the canvas. 

–  You can change the color and plot style by adding a RooFit::LineColor(int 
color) argument to the plotOn() call. See tutorial macro rf107 for details
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Exercise 3

•  Macro ex03_roostats_plr_interval.C
–  Opens the model.root file, retrieves the workspace and from "

that the ModelConfig object (unique statistical problem definition)"
and the observed data

–  Instantiates a RooStats Profile Likelihood Ratio calculator"
and lets it calculate the profile likelihood ratio interval on the above problem

–  Reports the results on the command line

•  Questions & explorations
–  How does the profile likelihood calculator result compare to your manual 

investigation of the likelihood ratio curve in Ex01?

–  Calculate the same type of interval at difference confidence levels, e.g. 65% 
and 95%.
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Exercise 4

•  Macro ex04_roostats_bayes_interval.C
–  Opens the model.root file, retrieves the workspace and from "

that the ModelConfig object (unique statistical problem definition)"
and the observed data

–  Instantiates a RooStats Bayesian calculator"
and lets it calculate the Bayesian credible interval on the above problem

–  Reports the results on the command line

•  Questions & explorations
–  How does the Bayesian 90% interval compare with flat prior to the Frequentist 

Profile Likelihood Ratio interval?

–  Run the macro for some different interval shapes: e.g. upper limit, or shorttest 
interval

–  Explore what happens for various choices of priors, e.g. 1/sqrt(mu),"
or flat prior for mu>0 only?

Note that this Bayesian calculator uses a simple numeric integration engine,"
it may emit warnings about numeric precision if pushed to perform complex"
integrations.
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Exercise 5

•  Macro ex05_build_PoissonPoisson.C
–  Constructs the classic statistical model known as ‘on/off’:"

A Poisson model for the signal region measuring mu*S+B"
A Poisson model for the control region measuring tau*B

–  Here tau is a scale factor for the size of the control region, e.g."
if tau=3 then a count of 30 in the control region will predict"
a background rate of 10 in the signal region with a relative"
error of 10/sqrt(30).

–  Constructs a RooStats ModelConfig and saves everything to a workspace"
on file.

•  Questions and explorations
–  Do you understand the observed uncertainty on the fitted background"

rate in the SR? (In terms of the given numbers, N_CR=200, tau=10, 
N_SR=25)?

–  Run the RooStats PLR and Bayesian calculators on this model
–  Can you reproduce the ‘standard candle’ result N_SR=178, N_CR=100, 

tau=1 of in the course and confirm that it’s signficance is exactly 5 sigma?!
To do so, plot a scan of the profile likelihood ratio of this problem (see Ex01!
on how to do that), and look at the value of the PLR for mu=0• Wouter Verkerke, NIKHEF



Exercise 6

•  Macro ex06_build_PoissonPoissonGlobs.C
–  Builds the same probability model as ex05, but uses the notion"

of global observables in the construction

–  Global observables are purely technical construction "
that ‘hard-wire’ certain observables in the model itself, "
rather than having them appear in the dataset, e.g."
"
      Data(NSR=25,MCR=200) ßà P(NSR, NCR)"
      Data(NSR=25)                 ßà P(NSR, NCR=200)

–  While mathematically equivalent, global observables, are often used"
for convenience so they don’t need to be carried in all datasets.

–  This is particularly true for models with many unit-Gaussian subsidiary"
measurements where all global observable values are always zero

•  Questions and explorations
–  Look at macro ex06 and see how it differs from macro ex05"

in how the problem is formulated

• Wouter Verkerke, NIKHEF



Exercise 7

•  Macro ex07_build_PoissonGaussGlobs.C
–  This macro builds a variant of the model of ex06 – it changes the control 

region model that measured the background B from a Poisson to a Gaussian.

–  It also maps the physics effect (the magnitude of the uncertainty) in a 
response function encoded in the signal region probability model in terms of a 
nuisance parameter alpha, and reduces the subsidiary measurement of alpha 
to a unit Gaussian.

–  Writes probability model and RooStats ModelConfig to output file

•  Questions and explorations
–  Identify the piece of code that encodes the response function of the 

systematic uncertainty.
–  Modify the response function such that magnitude of the systematic 

uncertainty is doubled and rerun
–  Analyze the model of ex07 with the RooStats PLR and Bayesian calculators
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Exercise 8

•  Macro ex08_roostats_cls_limit.C
–  Implements the RooStats hypothesis test inverter limit calculator."

This is the most general limit calculator.
–  In this macro the calculator is configured to use the"

profile likelihood ratio test statistic for the limit calculation,"
and to assume its known asymptotic distributions

–  In the final limit calculation the CLS technique is enabled, which is"
designed to always return non-empty intervals in the range [0,X]

•  Questions and explorations
–  Run the calculator first on several of the models built so far"

(Single Poisson, Two Poissons, Poisson/Gaussian)
–  Understand the working of the calculator by identifying its pieces

1)  An explicit alternative hypothesis is constructed from the workspace (ModelConfig for b-
only hypothesis). This is needed for the calculation of CLS and for the calculation"
of expected limits under the B-only hypothesis

2)  Set up an (asymptotic) calculator that can calculate the p-value of the data under both 
hypothesis (B-only, and S+B(for a given value of mu)

3)  Configure the Inverter, the tool that will vary mu in such a way that CLS == p-value(S+B)/
(1-p-value(B) corresponds to the desired confidence level. The value of mu for which this 
is true is then reported as the CLS upper limit
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Exercise 9

•  Macro ex09_roostats_cls_limit_toys.C
–  Implements the RooStats hypothesis test inverter limit calculator."

This is the most general limit calculator.
–  In this macro the calculator is configured to use the"

profile likelihood ratio test statistic for the limit calculation,"
but no assumptions are made on the distributions, instead these"
are calculated from distribution of ensembles of toy MC data

–  In the final limit calculation the CLS technique is enabled, which is"
designed to always return non-empty intervals in the range [0,X]

•  Questions and explorations
–  Run the calculator first on one of the model (NB: this calculation takes significantly 

more time than the asymptotic one0
–  Understand the working of the calculator by identifying its pieces

1)  An explicit alternative hypothesis is constructed from the workspace (ModelConfig for b-only 
hypothesis). This is needed for the calculation of CLS and for the calculation"
of expected limits under the B-only hypothesis

2)  Set up an a generic calculator for p-values from test statistic distribution that can calculate the p-
value of the data under both hypothesis (B-only, and S+B(for a given value of mu). This generic 
Frequentist calculator will use ensembles of toy data to obtain the distributions

3)  Configure the generic calculator to use the pne-sided Profile Likelihood Ratio test statistic 
4)  Configure the Inverter, the tool that will vary mu in such a way that CLS == p-value(S+B)/(1-p-

value(B) corresponds to the desired confidence level. The value of mu for which this is true is 
then reported as the CLS upper limit
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