

Institute of High Energy Physics Chinese Academy of Sciences

ATLAS ITk Strip beam test and simulation

Xiaocong Ai

DESY FH fellows meeting 27th February 2018

About Me

- Born and grew up in Hubei Province, China
- Undergraduate Study in Physics at Central China Normal University, Wuhan, China (2007-2011)
- PhD at Institute of High Energy Physics , Chinese Academy of Sciences, Beijing, China (2011-2016)
 - Partial Wave Analysis of J/ $\psi \rightarrow \gamma \phi \phi$ at BESIII
 - Search for Y(4260) in $e^+e^- \rightarrow J/\psi \eta \pi^0$ and $ppbar\pi^0$ at BESIII
- ONACPR fellow at DESY from Feb. 2017, working on ITk Strip Detector of ATLAS Upgrade

My Current Work

Testbeam data reconstruction&analysis

EUDET-type beam-telescope

- Testbeam of Strip sensor with various strip shapes:
 - Barrel Short/Long Strip module: rectangular strips
 - Endcap R0 module: stereo-Annulus radial strips
- EUTelescope software
 - used to do reconstruction of telescope beam test data
 - cannot deal with non-rectangular shape strips

page 3

My Current Work

ITk Performance with BCL and ReadoutGeometry software development

- Studies of ITk performance with BCL
 - Improvement in p_{T} resolution
 - Improvement in tracking efficiency
 - evaluate the effects of dead strips/modules
 - Improvement in calorimeter matching precision
- Software clean up and development of the ID/ITk Readout Geometry
 - Split up for subdetectors (Pixel, SCT/Strip and TRT)
 - Remove redundant methods, to vastly simply the code
 - Other necessary clean-up

Barrel Completion Layer (BCL):

Proposed extra layer between ITk Strip B2 and B3 to cover the barrel endcap gap

My Favourite Plots

From PhD research: Partial Wave Analysis of $J/\psi \rightarrow \gamma \phi \phi$ at BESIII

- Lattice QCD predictions
 - ground state of 2++ glueball in 2.3 ~2.4 GeV
 - ground state of 0++ glueball in 2.3~2.6 GeV
- The radiative decay channel of J/ψ meson is one of the most promising hunting grounds for glueballs
- The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for 0⁻⁺ glueball
 - Dominant contribution from pseudoscalars; $\eta(2225)$ is confirmed; while two additional pseudoscalars $\eta(2100)$ and X(2500) are observ ed.
 - The three tensors f₂(2010), f₂(2300) and f₂(2340) stated in π⁻p reactions are also observed in J/ψ→γφφ with a strong production of f₂(2340)

