Overview and Highlights FZJ

Andreas Lehrach, FZJ and RWTH Aachen

Subtopic coordinator ARD ST2
Introduction

Progress
First deuteron EDM measurement at COSY
Technical developments for proton EDM ring
Developments at COSY for HESR and EDM
Novel polarized proton source

Conclusion & Plans
Stepwise Approach for EDM

Measurements of charged particle EDMs from COSY to a prototype and final EDM storage ring

Cooler Synchrotron COSY

• Ideal starting point for R&D work
• Deliver first direct EDM measurement for deuterons

→ Design of a final EDM storage ring

Prototype EDM Ring

• Prototype EDM ring
• Energy 35 - 45 MeV, CW-CCW beams
• Pure electric and combined E/B
• Length roughly 100m
HIGHLIGHT: FIRST DEUTERON EDM MEASUREMENT PRECURSOR EXPERIMENT AT COSY

Waveguide RF Wien filter

Commissioning: Spin rotation

First ever deuteron EDM measurement

Installation in COSY

Glance into its inside

EDM Limits for COSY:

Statistical sensitivity: 10^{-23-24} e·cm
Systematics due to Imperfections & alignment: ~ 10^{-19} e·cm
Design Study for Prototype EDM Ring

Beam Parameter for PT EDM Ring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>kinetic energy</td>
<td>45</td>
<td>30</td>
<td>MeV</td>
</tr>
<tr>
<td>$\beta = \frac{v}{c}$</td>
<td>0.299</td>
<td>0.247</td>
<td>1</td>
</tr>
<tr>
<td>momentum</td>
<td>294</td>
<td>239</td>
<td>MeV/c</td>
</tr>
<tr>
<td>magnetic rigidity $B\rho$</td>
<td>0.981</td>
<td>0.798</td>
<td>T·m</td>
</tr>
<tr>
<td>electric rigidity $E\rho$</td>
<td>87.941</td>
<td>59.071</td>
<td>MV</td>
</tr>
<tr>
<td>γ-kinetic</td>
<td>1.048</td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>emittance $\epsilon_x = \epsilon_y$</td>
<td>1.0</td>
<td>1.0</td>
<td>mm·mrad</td>
</tr>
<tr>
<td>acceptance $a_x = a_y$</td>
<td>10.0</td>
<td>1.0</td>
<td>mm·mrad</td>
</tr>
</tbody>
</table>

Deflector Development

Static \textit{ExB} deflector

Challenge: Investigate/demonstrate the feasibility of \textit{ExB} deflector for deuteron EDM storage ring with 10 MV/m and 0.3 T. Study breakdown behavior in presence of magnetic fields.

Simulation of electron trajectories

- B-field: 0 T
- B-field: 0.15 T

Setup of electrodes using existing ANKE Magnet

Commissioning in April this year

Different shapes of electrodes will be tested
Stochastic Cooling

HESR slot-ring couplers

Successfully tested with PANDA cluster target at COSY

PANDA Cluster-Target with Stochastic Cooling

Plans:

• Further development of the slot ring couplers in terms of aperture limitation, frequency range and resonant design

Development of algorithms to adjust stochastic cooling while cooling is in operation

• Study of cooling structures for colliding beams

• Stochastic cooling with weak focusing EDM lattice

Poster by Nikolay SHURKHNO (FZJ)

Courtesy: Rolf STASSEN (FZJ)
Electron Cooling

PANDA cluster target (reduced thickness, $3 \cdot 10^{14}$) e-cooling with 0.6 A

Best e-cooling performance observed with fast stochastic transverse pre-cooling

Successful electron cooling down to $dP/P = 3.85 \cdot 10^{-5}$ $I_e = 0.6$ A, with barrier bucket

$P = 2425$ MeV/c

Courtesy: Seva KAMERDZIEV (FZJ)

Plans:

Modeling
- Cooler hardware
- Cooling process
- Compensation schemes

Improve transverse cooling

Move 2 MeV cooler to HESR
- Benefits heavy ion operation

Poster by Arthur HALAMA (FZJ)
Precision Beam Control

Enhanced orbit control
- Novel BPMs for EDM Development @ JEDI
- New BPM electronics
- Orbit correction software

Automatic correction & feedback
Developed together with industry partners

Tune measurement during ramping

Detailed and time-correlated archiving of beam parameters

Plans:
- Beam instrumentation for HESR
- Beam instrumentation developments for EDM
 Tune feedback in flat top and during acceleration

Courtesy: Bernd LORENTZ (FZJ)
Prototyping and Beam Physics

EDM accelerator component tests and experiments with spin at COSY
Development of a Novel Polarized Source

Nuclear polarized H atoms from HCl gas jet

** Principle **

- IR/UV Laser
 - For photo-dissociation & polarization of H atoms,
 - 100 mJ @ 1064 nm,
 - 20 mJ @ 213 nm,
 - 5 Hz, 170 ps

- Lamb-Shift polarimeter
 - For measurement of nuclear polarization

** Assembly at IKP **

- Nozzle
 - For HCl gas jet

Method described in:
- T. P. Rakitzis,

Build in cooperation: IKP 2 and 4, PGI-6, and University of Crete

Start of measurements: May 2018
Laser-Plasma Acceleration

Two new laser systems (JuSPARC I):

- Thales AMPHOS
- (40 mJ / 30 fs / 1 kHz) for SOFT X-RAY MAGNETO OPTICS
- (50 µJ / 100 fs / 10 MHz) for PHOTOELECTRON SPECTROSCOPY

• Participation in ATHENA_e:
 kHz Betatron radiation source

Injection of as electron bunches from nm-sized solid targets into a wake field

Simulation results:

• Participation in ATHENA_h:
 Polarized targets for proton and ion acceleration (and maybe, electrons)

Simulation results: Development of polarized targets:

- Two new laser systems (JuSPARC I):
 • (40 mJ / 30 fs / 1 kHz) for SOFT X-RAY MAGNETO OPTICS
 • (50 µJ / 100 fs / 10 MHz) for PHOTOELECTRON SPECTROSCOPY

- Injection of as electron bunches from nm-sized solid targets into a wake field

- Development of polarized targets:
 - Proton spin rotation during TNSA acceleration
 - Nuclear polarized H atoms from HCl jet

Cooperation partners: FZJ, HHUD, WWU, Univ. of Crete, SIOM

Talk by Anna HÜTZEN (FZJ)
Conclusion & Plans

Conclusion:
- First deuteron EDM measurement at COSY
- Conceptional design of Prototype EDM Ring
- Technical developments (Deflector, BPMs, …)
- Successful beam test at COSY for HESR and EDM

Plans:
- Push limit for Deuteron EDM measurement at COSY
- R&D work and technical design for prototype and final EDM storage ring
- Advanced phase-space cooling and beam control for FAIR (and EDM)
- Development of a novel polarized source

Deliverables for EDM Storage Rings:
- Scientific Input for The European Strategy for Particle Physics (ESPP)
- Executive Summary to CERN Physics Beyond Colliders (PBC)
- Design Report for Proton EDM Ring
Search for Electric Dipole Moments

Approach: EDM search in time development of spin in a storage ring:

\[\vec{\Omega}_G = 0 \]
\[\vec{\Omega}_d = \vec{d} \times \vec{E}^* \]

“Freeze“ horizontal spin precession; watch for development of a vertical component!

A *magic* storage ring for protons (electrostatic), deuterons, and helium-3

<table>
<thead>
<tr>
<th>particle</th>
<th>p (GeV/c)</th>
<th>E (MV/m)</th>
<th>B (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>0.701</td>
<td>16.789</td>
<td>0.000</td>
</tr>
<tr>
<td>deuteron</td>
<td>1.000</td>
<td>-3.983</td>
<td>0.160</td>
</tr>
<tr>
<td>(^3\text{He})</td>
<td>1.285</td>
<td>17.158</td>
<td>-0.051</td>
</tr>
</tbody>
</table>

One machine with r ~ 30 m
Status of HESR at FAIR

High-Energy Storage Ring (HESR) in time and budget

• All **Dipoles** produced, tested in Jülich and 65% are delivered to FAIR

• **Quadrupoles** are all produced in Jülich

• Two assembly lines for the quadrupole groups in the arcs are in preparation

• **Sextupoles, steerers** and their power converters are in production (Romania), magnets arriving continuously in Jülich

• Nearly all other **power converters** are produced, in Jülich.

• **RF equipment** is in mechanical design

• **Stochastic cooling equipment, Beam diagnostics and Injection kickers** are in production
Production of Polarized Proton Beams

100 mJ @ 1064 nm
Alignment of HCl bonds

20 mJ @ 213 nm
Photo-dissociation and polarization of the H nucleus

300 J @ 800 nm
Acceleration of the protons in gas jet