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Università di Milano-Bicocca, Milan

Loops and Legs in Quantum Field Theory

Wörlitz, 26 April 2010

•• Shower Monte Carlo + NLO

•• The POWHEG method

•• The POWHEG BOX

•• A few POWHEG results

•• Conclusions



High energy collisions

High-energy particle physics deals with the scattering and the production of elemen-

tary constituents

e+e−→ qq̄ gg→H gg→ gg

Ideally, one needs elementary constituents as projectiles and targets, (i.e. a collider

for leptons, gluons and quarks) and a final-state detector of leptons, gluons and

quarks. Not obvious for quarks and gluons:

•• at short distance, due to asymptotic freedom, quarks and gluons behave as free

particles

•• at long distance, infrared slavery: very strong interactions hide the simplicity of

the description of the constituents.
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Dominant corrections

Collinear-splitting processes in the initial

and final state (always with transverse mo-

menta > ΛQCD) are strongly enhanced. This

is due to the fact that, in perturbation the-

ory, the denominators in the propagators are

small.

•• The algorithms that evaluate (and resum) all these enhanced contributions are

called shower algorithms.

•• Shower algorithms give a description of a hard collision up to distances of order

1/ΛQCD.

•• At larger distances, perturbation theory breaks down and we need to resort to non-

perturbative methods (i.e. lattice calculations). However, these methods can be ap-

plied only to simple systems. The only viable alternative is to use models of hadron

formation.
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Shower Monte Carlo

• In high-energy collider physics not many questions can be answered without

a Shower Monte Carlo (SMC).

• The name shower comes from the fact that we dress a hard event with QCD

radiation.

• In general, the accuracy of SMC programs is Leading Order + Leading Log.

They resum the largest logarithmic terms coming from the collinear (and soft)

regions.

• Events are then characterized by a small number of high-pT, well-separated,

final-state partons (the ones described by the tree-level Born amplitude) +

many collinear partons, whose collinear divergences have been correctly re-

summed.
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NLO

LO matrix elements are (often, but not always) good for shapes. Uncertain absolute

normalization

αs(µ) =
αs(µ0)

1 + b0αs(µ0) log
(
µ2/µ2

0

) , b0 =
11CA − 4nfTF

12π

∣
∣
∣
∣
nf=5

≈ 0.6

αn
s (2µ) ≈ αn

s (µ)
[
1− b0αs(µ) log(4)

]n ≈ αn
s (µ)

(
1− nαs(µ)

)

For µ = 100 GeV,αs = 0.12, normalization uncertainty:
W + 1J W + 2J W + 3J

±12% ±24% ±36%

To improve on this, we need to go to NLO

•• Positive experience with NLO calculations at LEP, HERA and Tevatron

•• NLO results are cumbersome to compute: typically made up of an n-body (Born

+ virtual + soft and collinear remnants) and (n + 1)-body (real emission) terms,

both divergent (finite only when summed up).
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NLO vs Shower Monte Carlo

NLO

✓ accurate shapes at high pT

✓ normalization accurate at NLO order

✓ reduced dependence on renormalization

and factorization scales

✗ wrong shapes at small pT

✗ description only at the parton level

SMC (LO + shower)

✗ bad description at high pT

✗ normalization accurate only at LO

✓ correct Sudakov suppression at small pT

✓ simulate events at the hadron level

It is natural to try to merge the two approaches, keeping the good features of both

• MC@NLO [Frixione and Webber, 2001]

• POWHEG [Nason, 2004]
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POsitive-Weight Hardest Emission Generator

✓ POWHEG is a method for interfacing NLO calculations with parton shower

programs [Nason, hep-ph/0409146]

✓ it generates the hardest emission first, with NLO accuracy, producing events

with positive weights. The acronym comes from this feature

✓ The rest of the shower is performed by the (usual) LO Shower Monte Carlo

programs, such as PYTHIA, HERWIG . . .

It is then possible to compare the different outputs

✓ As far as the hardest emission is concerned, POWHEG guarantees

•• NLO accuracy on integrated quantities

•• collinear, double-log (soft-collinear), large-Nc-soft single-log of the Su-

dakov (in fact, corrections that exponentiates are obviously OK)

✓ The subsequent (less hard) emissions have the accuracy of the Shower Monte

Carlo program one is using.
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Existing implementations

Up to now, the following processes have been implemented using the POWHEG

method:

•• pp→ZZ [Nason and Ridolfi, hep-ph/0606275]

•• e+e− → hadrons [Latunde-Dada, Gieseke and Webber, hep-ph/0612281]

e+e− → tt̄ with top decay [Latunde-Dada, arXiv:0806.4560]

•• pp→QQ (cc̄, bb̄, tt̄) with spin correlations [Frixione, Nason and Ridolfi,

arXiv:0707.3088]

•• pp→W/Z with spin correlations [Alioli, Nason, Oleari and Re,

arXiv:0805.4802; Hamilton, Richardson and Tully, arXiv:0806.0290]

•• pp→H [Alioli, Nason, Oleari and Re, arXiv:0812.0578; Hamilton, Richardson

and Tully, arXiv:0903.4345]

•• pp→H +W/Z [Hamilton, Richardson and Tully, arXiv:0903.4345]



Existing implementations

•• single-top production, in the s and t channel, with top decay [Alioli, Nason,

Oleari and Re, arXiv:0907.4076]

•• Higgs boson production in vector boson fusion [Nason and Oleari,

arXiv:0911.5299] in the POWHEG BOX

All POWHEG implementations for hadronic colliders have been interfaced to

both PYTHIA and HERWIG.

To appear very soon

•• pp→Z + 1 jet [Alioli, Nason, Oleari and Re] in the POWHEG BOX

•• pp→VV [Hamilton]
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The POWHEG BOX
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The POWHEG BOX

The POWHEG BOX is a public-available computer framework, presented in [Alioli,

Nason, Oleari and Re, arXiv: 1002.2581], that implements in practice the theoret-

ical construction of the POWHEG formalism, for generic NLO processes, accord-

ing to the general formulation of POWHEG given in [Frixione, Nason and Oleari,

arXiv:0709.2092]

More precisely, the user should only supply:

✓ the lists of the Born and real processes (i.e. sc→ gud ⇐⇒ [3, 4, 0, 2, 1])

✓ the Born phase space

✓ the Born squared amplitudes, the color-correlated and spin-correlated ampli-

tudes, for all partonic subprocesses

All these amplitudes are common ingredients of a NLO calculation

✓ the real squared amplitude for all the relevant real-emission subprocesses

✓ the finite part of the virtual corrections, computed in conventional dimensional

regularization or in dimensional reduction

✓ the Born color structures in the limit of large number of colors.

All the rest will be done automatically!



The POWHEG BOX

The user should not worry about

✓ the phase space for initial-state radiation and final-state radiation (i.e. the phase

space for real emission)

✓ the combinatorics, the identification of all singular regions in the real amplitude

R, the soft and collinear limits, the calculation of all the counterterms

✓ the calculation of the differential NLO cross section

Spinoff: NLO results using the FKS subtraction scheme

✓ the calculation of the upper bounds for the generation of radiation (for an effi-

cient generation of the Sudakov-suppressed events)

✓ the generation of radiation

✓ writing the event into the Les Houches interface (to communicate with the LO

Shower Monte Carlo programs)

The user has only to know in which format to supply the ingredients listed before.
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The POWHEG BOX

No need to open the BOX!
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The POWHEG BOX How-To

• parameter (nlegborn=5)
[
pp→(Z→e+e−) + j

]
in included file pwhg flst.h

flst nborn and flst nreal

• flst born(k=1..nlegborn,j=1..flst nborn): flavour of the k-th leg of the j-th Born graph

flst real(k=1..nlegreal,j=1..flst nreal): flavour of the k-th leg of the j-th real graph.

It is required that legs in the Born and real processes have to be ordered as follows:

– leg 1, incoming parton with positive rapidity

– leg 2, incoming parton with negative rapidity

– from leg 3 onward, final state particles, in the order: colorless particles first, massive

coloured particles, massless coloured particles.

The flavour is taken incoming for the two incoming particles and outgoing for the outgoing

particles. The flavour index is assigned according to PDG conventions, except for gluons,

where 0 is used instead of 21.

Example: pp→(Z→e+e−) + 2 j, the string [1,0,-11,11,1,0] labels the process dg→ e+e−dg

• init couplings
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• born phsp(xborn) for Born phase space

xborn(1..ndim) array of random numbers ndim=(nlegborn-2)*3-4+2-1

– the Born Jacobian kn jacborn, Born momenta in the laboratory frame

kn pborn(0:3,1..nlegborn), Born momenta in the partonic CM frame

kn cmpborn(0:3,1..nlegborn) and Bjorken x (kn xb1 and kn xb2).

• set ren fac scales(mur,muf)

• setborn(p,bflav,born,bornjk,bmunu)

– the momenta p(0:3,1..nlegborn)

– the flavour string bflav(1..nlegborn)

– bornjk(1..nlegborn,1..nlegborn)

– the Born helicity-correlated squared amplitudes bmunu(0:3,0:3,j=1..nlegborn)

• setvirtual(p,vflav,virtual) returns finite part of the interference 2 Re (MB × MV),

after factorizing out (d = 4− 2ǫ)

N =
(4π)ǫ

Γ(1−ǫ)

(
µ2

Q2

)ǫ
αs

2π
• setreal(p,rflav,amp2)

– the momenta p(0:3,1..nlegreal)

– the flavour string rflav(1...nlegreal)

– amp2: spin and color summed and averaged real squared amplitudes



The POWHEG BOX today

The POWHEG BOX is a package in evolution.

As new processes are implemented in the BOX, new problems will probably need to

be solved and the code will change accordingly.

Right now, in the code, you can find

• W production: pp( p̄)→W→ lνl ⇐= Born zero diagrams

• Z production: pp( p̄)→Z→ l−l+

• Higgs production in gluon fusion ⇐= tuning of the real cross section

• Higgs production in VBF ⇐= tagging parton lines

• Z + 1 jet: pp( p̄)→Z + 1 jet→ l−l+ + 1 jet ⇐= divergent Born
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Higgs boson in VBF

yrelj3
= y j3 −

y j1 + y j2
2



Higgs boson in VBF

pT j > 20 GeV, |y j| < 5

pT
tag > 30 GeV, |y j1 − y j2 | > 4.2 , y j1 · y j2 < 0 , m j j > 600 GeV

veto jet : min
(
y j1 , y j2

)
< y j < max

(
y j1 , y j2

)
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Z + 1 jet

p

p

q

q

l-

l+
Z

g

New problem to solve: the Born contributions are

divergent.

POWHEG starts from a Born diagram and attaches

radiation.

Simplest solution: introduce a cutoff. Generate

events starting from partonic Born events with

pBornT > pmin
T

•• Study the effect of the cutoff at the partonic Born level on showered events

•• Find a way to merge consistently NLO Z and Z + 1 jet events.
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Preliminary merged Z and Z + 1 jet events
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Conclusions

✓ It is relatively easy to add new processes in the POWHEG BOX.

✓ No need to know how it works but only how to “communicate” with it.

✓ Please, feel free to get in touch with us if you want to insert new NLO

calculations into the POWHEG BOX.
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High energy collisions

High-energy particle physics deals with the scattering and the production of elemen-

tary constituents

e+e−→ qq̄ gg→H gg→ gg

Ideally, one needs elementary constituents as projectiles and targets, (i.e. a collider

for leptons, gluons and quarks) and a final-state detector of leptons, gluons and

quarks. Not obvious for quarks and gluons:

•• at short distance, due to asymptotic freedom, quarks and gluons behave as free

particles

•• at long distance, infrared slavery: very strong interactions hide the simplicity of

the description of the constituents.
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Dominant corrections

Collinear-splitting processes in the initial

and final state (always with transverse mo-

menta > ΛQCD) are strongly enhanced. This

is due to the fact that, in perturbation the-

ory, the denominators in the propagators are

small.

•• The algorithms that evaluate all these enhanced contributions are called shower

algorithms.

•• Shower algorithms give a description of a hard collision up to distances of order

1/ΛQCD.

•• At larger distances, perturbation theory breaks down and we need to resort to non-

perturbative methods (i.e. lattice calculations). However, these methods can be ap-

plied only to simple systems. The only viable alternative is to use models of hadron

formation.
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Hadronic final states

 IHEP    ID      IDPDG IST MO1 MO2 DA1 DA2   P-X     P-Y     P-Z  ENERGY    MASS     V-X       V-Y       V-Z       V-C*T
   30 NU_E          12   1  28  23   0   0   64.30   25.12-1194.4 1196.4    0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
   31 E+           -11   1  29  23   0   0  -22.36    6.19 -234.2  235.4    0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  230 PI0          111   1 155  24   0   0    0.31    0.38    0.9    1.0    0.13 4.209E-11 6.148E-11-3.341E-11 5.192E-10
  231 RHO+         213 197 155  24 317 318   -0.06    0.07    0.1    0.8    0.77 4.183E-11 6.130E-11-3.365E-11 5.189E-10
  232 P           2212   1 156  24   0   0    0.40    0.78    1.0    1.6    0.94 4.156E-11 6.029E-11-4.205E-11 5.250E-10
  233 NBAR       -2112   1 156  24   0   0   -0.13   -0.35   -0.9    1.3    0.94 4.168E-11 6.021E-11-4.217E-11 5.249E-10
  234 PI-         -211   1 157   9   0   0    0.14    0.34  286.9  286.9    0.14 4.660E-13 8.237E-12 1.748E-09 1.749E-09
  235 PI+          211   1 157   9   0   0   -0.14   -0.34  624.5  624.5    0.14 4.056E-13 8.532E-12 2.462E-09 2.462E-09
  236 P           2212   1 158   9   0   0   -1.23   -0.26    0.9    1.8    0.94-4.815E-11 1.893E-11 7.520E-12 3.252E-10
  237 DLTABR--   -2224 197 158   9 319 320    0.94    0.35    1.6    2.2    1.23-4.817E-11 1.900E-11 7.482E-12 3.252E-10
  238 PI0          111   1 159   9   0   0    0.74   -0.31  -27.9   27.9    0.13-1.889E-10 9.893E-11-2.123E-09 2.157E-09
  239 RHO0         113 197 159   9 321 322    0.73   -0.88  -19.5   19.5    0.77-1.888E-10 9.859E-11-2.129E-09 2.163E-09
  240 K+           321   1 160   9   0   0    0.58    0.02  -11.0   11.0    0.49-1.890E-10 9.873E-11-2.135E-09 2.169E-09
  241 KL_1-     -10323 197 160   9 323 324    1.23   -1.50  -50.2   50.2    1.57-1.890E-10 9.879E-11-2.132E-09 2.166E-09
  242 K-          -321   1 161  24   0   0    0.01    0.22    1.3    1.4    0.49 4.250E-11 6.333E-11-2.746E-11 5.211E-10
  243 PI0          111   1 161  24   0   0    0.31    0.38    0.2    0.6    0.13 4.301E-11 6.282E-11-2.751E-11 5.210E-10

High-energy experimental physicists feed this kind of output through their detector-simulation

software, and use it to determine efficiencies for signal detection, and perform background esti-

mates.

Analysis strategies are set up using these simulated data.
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A word of warning

“The Monte Carlo simulation has become the major mean of visualization of

not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by theMonte Carlo

generators carry the authority of data itself. They look like data and feel like

data, and if one is not careful they are accepted as if they were data.”

J.D. Bjorken

Talk given at the 75th anniversary celebration of the Max-Planck Institute of

Physics, Munich, Germany, December 10th, 1992, as quoted in Beam Line,

Winter 1992, Vol. 22, No. 4. Reference taken from Sjöstrand.
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Summarizing

• In high-energy collider physics not many questions can be answered without

a Shower Monte Carlo (SMC).

• The name shower comes from the fact that we dress a hard event with QCD

radiation.

• After a latency period, many physicists are now looking at shower Monte

Carlo models again, under different perspective: Catani, Krauss, Kühn &

Webber; Mangano, Moretti, Piccinini, Pittau, Polosa & Treccani; Frixione &

Webber; Kramer, Mrenna, Nagy & Soper; Giele, Kosower & Skands; Bauer &

Schwartz; Schumann & Krauss; Dinsdale, Ternick & Weinzierl; . . .

• Shower algorithms summarize most of our knowledge in perturbative QCD:

infrared cancellations, Altarelli-Parisi equations, soft coherence, Sudakov

form factors. All have a simple interpretation in terms of shower algorithms.
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Shower basics: collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections factorize

near collinear limit

dΦn+1 = dΦn dΦr dΦr ÷ dt dz dϕ

|Mn+1|2dΦn+1 =⇒ |Mn|2 dΦn
αs

2π

dt

t
Pq,qg(z) dz

dϕ

2π







dt

t
≈ dθ

θ
collinear singularity

dz

1 − z
≈ dEg

Eg
soft singularity

t : (k + l)2, p2T , E
2θ2 . . .

z = k0/(k0 + l0) : energy (or p‖ or p
+) fraction of quark

Pq,qg(z) = CF
1 + z2

1− z
: Altarelli-Parisi splitting function

(ignore z → 1 IR divergence for now)



Shower basics: collinear factorization

If another gluon becomes collinear, iterate the previous formula

θ′, θ → 0 with θ′ > θ

|Mn+1|2dΦn+1 =⇒ |Mn−1|2dΦn−1 ×
αs

2π

dt′

t′
Pq,qg(z

′) dz′
dϕ′

2π

× αs

2π

dt

t
Pq,qg(z) dz

dϕ

2π
θ(t′ − t)

Collinear partons can be described by a factorized integral ordered in t.
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Collinear factorization: multiple emissions

For n collinear emissions, the cross section goes as

σ ≈ σ0αn
s

∫ Q2

t0

dt1
t1

dt2
t2

. . .
dtn
tn

θ
(

Q2 > t1 > t2 > . . . > tn > t0

)

= σ0αn
s

∫ Q2

t0

dt1
t1

∫ t1

t0

dt2
t2

. . .
∫ tn−1

t0

dtn
tn

≈ σ0αn
s
1

n!

(

log
Q2

t0

)n

•• Q2 is an upper cutoff for the ordering variable t

•• t0 ≈ Λ2 ≈ Λ2
QCD is an infrared cutoff (quark mass, confinement scale)

•• Due to the log dependence, we call it leading-log approximation.

•• According to the Kinoshita-Lee-Nauenberg theorem, the virtual corrections, or-

der by order, contribute with a comparable term, with opposite sign.

•• The virtual leading-log contribution should be included in order to get sensible

results!
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Simple probabilistic interpretation of “not-resolved” corrections

•• probability of emission in the interval dt, at order αs (multiple emissions are of

higher orders inαs)

dPemis(t+ dt, t) =
dt

t

αs(t)

2π

∫

dz Pi, jk(z)

•• probability of no emission in the interval dt

dPno emis(t + dt, t) = 1− dPemis(t+ dt, t) = 1− dt

t

αs(t)

2π

∫

dz Pi, jk(z)

The “no emission” probability contains, through the 1, all the virtual corrections

(in the collinear approximation, that is at the leading-log level).

t2 t1tn

dt
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Simple probabilistic interpretation of “not-resolved” corrections

•• divide a finite interval [t2, t1] in N small intervals dt = (t1 − t2)/N.

t2 t1tn

dt

The probability of not emitting radiation between the two ordering scales t1 and

t2 is given by the product

Pno emis(t1, t2) = lim
N→∞

N

∏
n=1

[

1− dt

tn

αs(tn)

2π

∫

dz Pi, jk(z)

]

= exp

{

−
∫ t1

t2

dt

t

αs(t)

2π

∫

dz Pi, jk(z)

}

≡ ∆(t1, t2)

•• The weight ∆(t1, t2) is called Sudakov form factor. It resums all the dominant

virtual corrections to the tree graph (in the collinear approximation).
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Sudakov form factors

∆i(t1, t2) = exp

{

−∑
jk

∫ t1

t2

dt

t

αs(t)

2π

∫

dz Pi, jk(z)

}

Notice that, when t2 ≪ t1, ∆→ 0, i.e. the probability that a hard parton turns into a

narrow jet, or that it does not radiate at all, is small (it is Sudakov suppressed)
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Final recipe

Si(t, E) = ∆i(t, t0) 1+ ∑
( jk)

∫ t

t0

αS(t
′)

2π

dt′

t′

∫

dz
∫

dϕ

2π
∆i

(
t, t′
)
Pi, jk(z) S j

(
t′, zE

)
Sk

(
t′, (1− z)E

)

•• consider all tree graphs.

•• assign values to the radiation variables Φr (t, z andϕ) to each vertex.

•• at each vertex, i → jk, include a factor

dt

t
dz

αs(t)

2π
Pi, jk(z)

dϕ

2π

•• include a factor ∆i(t1, t2) to each internal parton i, from hardness t1 to hardness t2.

•• include a factor ∆i(t , t0) on final lines (t0 = IR cutoff)
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Accuracy: soft divergences and double-log regions

z → 1 (z → 0) region problematic. In fact, for z → 1, Pqq, Pgg ÷ 1/(1− z)

The choice of the ordering variable t makes a difference

virtuality: t ≡ E2z(1− z)

2(1−cosθ)
︷︸︸︷

θ2

p2T: t ≡ E2z2(1− z)2θ2

angle: t ≡ E2θ2

virtuality : z(1− z) > t/E2 =⇒
∫

dt

t

∫ 1−
√
t/E

√
t/E

dz

1− z
≈ 1

4
log2

t

E2

p2T : z2(1− z)2 > t/E2 =⇒
∫

dt

t

∫ 1−t/E2

t/E2

dz

1− z
≈ 1

2
log2

t

E2

angle : =⇒
∫

dt

t

∫ 1

0

dz

1− z
≈ log t logΛ

Sizable difference in double-log structure!
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Angular ordering and color coherence

Mueller (1981) showed that angular ordering is the correct choice

dθ

θ

αs

(
p2T
)

2π
P(z) dz

θ1 > θ2 > θ3 . . .

p2T = E2z2(1− z)2θ2

αs(p2T) for a correct treatment of charge renormalization in soft region

Soft gluons emitted at large angles from final-state partons add coherently

• angular ordering accounts for soft

gluon interference.

• intensity for photon jets = 0

• intensity for gluon jets = CA instead

of 2CF + CA



New developments

•• Interfacing Matrix Elements (ME) generators with Parton Showers

– CKKW matching [Catani, Krauss, Küen, Webber]

– MLMmatching [Mangano]

•• Interfacing NLO calculations with Parton Showers

– MC@NLO [Frixione, Webber]

– POWHEG [Nason]

Several other approaches have appeared

•• e+e− → 3 partons [Kramer, Mrenna, Soper]

•• Shower by antenna factorization [Giele, Kosower, Skands]

•• Shower by Catani-Seymour dipole factorization [Schumann, Krauss]

•• Shower with quantum interference [Nagy, Soper]

•• Shower by Soft Collinear Effective Theory [Bauer, Schwartz]

•• Shower from the dipole formalism [Dinsdale, Ternick, Weinzierl]

Up to now, complete results for hadron colliders only from MC@NLO and POWHEG.



NLO + Parton Shower

LO-ME good for shapes. Uncertain absolute normalization

αn
s (2µ) ≈ αn

s (µ)
(
1− b0αs(µ) log(4)

)n ≈ αn
s (µ)

(
1− nαs(µ)

)

For µ = 100 GeV,αs = 0.12, normalization uncertainty:
W + 1J W + 2J W + 3J

±12% ±24% ±36%

To improve on this, we need to go to NLO

The main problem in merging a NLO result and a Parton Shower is not to double-

count radiation: the shower might produce some radiation already present at the

NLO level (both at the virtual and at the real level).

LO: NLO:



NLO vs Shower Monte Carlo

NLO

✓ accurate shapes at high pT

✓ normalization accurate at NLO order

✓ reduced dependence on renormalization

and factorization scales

✗ wrong shapes at small pT

✗ description only at the parton level

SMC (LO + shower)

✗ bad description at high pT

✗ normalization accurate only at LO

✓ correct Sudakov suppression at small pT

✓ simulate events at the hadron level

It is natural to try to merge the two approaches, keeping the good features of both

MC@NLO [Frixione and Webber, 2001] and POWHEG [Nason, 2004] do this in a consistent way
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POsitive-Weight Hardest Emission Generator

✓ it generates events with positive weights. NO negative weights to handle

✓ it is independent from parton-shower programs. Can be interfaced with

PYTHIA, HERWIG, SHERPA. . .

It is then possible to compare the different outputs

✓ No need to implement new interfaces

Two possible ways to interface to shower Monte Carlo programs

1. Les Houches Event format. The event is written on a file that is subse-

quently showered by HERWIG, PYTHIA. . .

2. on the fly. We provideUPINIT andUPEVNTdirectly running inHERWIG

and PYTHIA
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Existing implementations

The POWHEG method has already been successfully used in

•• pp→ZZ [Nason and Ridolfi, hep-ph/0606275]

•• e+e− → hadrons [Latunde-Dada, Gieseke and Webber, hep-ph/0612281]

e+e− → tt̄ with top decay [Latunde-Dada, arXiv:0806.4560]

•• pp→QQ (cc̄, bb̄, tt̄) with spin correlations [Frixione, Nason and Ridolfi,

arXiv:0707.3088].

•• pp→W/Z with spin correlations [Alioli, Nason, C.O. and Re,

arXiv:0805.4802; Hamilton, Richardson and Tully, arXiv:0806.0290].

•• pp→H [Alioli, Nason, C.O. and Re, arXiv:0812.0578; Hamilton, Richardson

and Tully, arXiv:0903.4345]

•• pp→H +W/Z [Hamilton, Richardson and Tully, arXiv:0903.4345]

All POWHEG implementations for hadronic colliders have been interfaced to

both PYTHIA and HERWIG.



To appear very soon

•• single-top production [Alioli, Nason, C.O. and Re]

•• pp→W/Z + 1 jet [Alioli, Nason, C.O. and Re]

•• pp→VV [Hamilton and Nason]

We are working now on a general framework for the implementation of any NLO

process into the POWHEG formalism.

Given the Born, real and virtual amplitudes, combine them automatically to pro-

duce POWHEG events.

Truncated shower

•• in an approximate form, truncated shower has been studied in

e+e− → hadrons [Latunde-Dada Gieseke and Webber, hep-ph/0612281]

•• included in the HERWIG++ framework [Bähr, Gieseke, Gigg, Grellscheid,

Hamilton, Plätzer, Richardson, Seymour and Tully, arXiv:0812.0529] and in

all the HRT’s papers
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POWHEG

dσNLO = dΦn

{

B(Φn) +V(Φn) +
[
R(Φn,Φr)− C(Φn,Φr)

]
dΦr

}

dΦn+1 = dΦn dΦr dΦr ÷ dt dz dϕ

V(Φn) = Vb(Φn) +
∫

dΦr C(Φn,Φr) ⇐= finite

dσSMC = B(Φn) dΦn

{

∆t0 +
αs

2π
P(z)

1

t
∆t dΦr

}

∆t = exp

[

−
∫

dΦ′
r

αs

2π
P(z′)

1

t′
θ(t′ − t)

]

SMC Sudakov form factor

dσPOWHEG = B(Φn) dΦn

{

∆
(
Φn, p

min
T

)
+

R(Φn,Φr)

B(Φn)
∆(Φn, pT) dΦr

}

B(Φn) = B(Φn) +V(Φn) +
∫

dΦr
[
R(Φn,Φr)− C(Φn,Φr)

]

∆(Φn, pT) = exp

[

−
∫

dΦ′
r
R(Φn,Φ

′
r)

B(Φn)
θ
(
kT(Φn,Φ

′
r

)
− pT)

]

POWHEG Sudakov
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Z production: POWHEG + HERWIG vs MC@NLO

Small differences in the high- and low-pT regions.



Rapidity distribution of hardest jet at Tevatron

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA



Rapidity distribution of hardest jet at Tevatron

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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ALPGEN and NLO vs MC@NLO: tt̄ + 1 jet

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(
dσ

dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

Rapidity y1 of the leading jet (highest pT).

POWHEG’s distribution as in ALPGEN: no dip present. The size of discrepancy can be attributed

to different treatment of higher-order terms.

pp→ tt̄ + jet at NLO [Dittmaier, Uwer and Weinzierl, arXiv:0810.0452] shows no dip too.



Higgs boson production: POWHEG + HERWIG vs MC@NLO

Differences in the high- and low-pT regions. More in the next slides.



Higgs boson production: POWHEG + PYTHIA vs PYTHIA

•• A shower Monte

Carlo is accurate

in the radiation of

the hardest jet only

in the collinear re-

gions.

•• Only because

the generation of

radiation in vector-

boson and Higgs

boson production

in PYTHIA is

very similar to the

POWHEG one, we

can make compar-

isons of p
jet
T and pHT

distributions.



Higgs boson production at the LHC

B(Φn) = B(Φn) +V(Φn) +
∫

dΦr

[
R(Φn,Φr)− C(Φn,Φr)

]

dσ = B(Φn) dΦn

{

∆
(
Φn, p

min
T

)
+ ∆(Φn, pT)

R(Φn,Φr)

B(Φn)
dΦr

}

dσrad ≈ B(Φn)

B(Φn)
R(Φn+1) dΦn+1 =

{

1 + O (αs)
}

R(Φn+1) dΦn+1

Better agreement with NNLO in this way



Higgs boson production at the LHC

•• Dip inherited from the deeper dip of HERWIG. MC@NLO fills partially the dip.

•• It gets worse for large p
jet
T

•• Why MC@NLO has a dip in the hardest jet rapidity?

•• Why POWHEG has no dip? Is that because of the hardest pT spectrum?
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Hard pT spectrum in POWHEG

We have enough flexibility to get rid of higher cross section at high pT, if we want. Go back

to the POWHEG cross section

dσ = B(Φn)

{

∆
(
pmin
T

)
+ ∆(pT)

R(Φn+1)

B(Φn)
dΦr

}

dΦn

B(Φn) = B(Φn) +V(Φn) +
∫

dΦr

[
R(Φn,Φr)− C(Φn,Φr)

]

∆(pT) = exp

[

−
∫

dΦ′
r
R(Φn,Φ

′
r)

B(Φn)
θ
(
pT

′ − pT

)
]

Break R = Rs + R f , with R f finite in collinear and soft limit. Define

dσ ′ = Bs(Φn)

{

∆s

(
pmin
T

)
+ ∆s(pT)

Rs(Φn+1)

B(Φn)
dΦr

}

dΦn + R f (Φn+1) dΦn+1

Bs(Φn) = B(Φn) +V(Φn) +
∫

dΦr

[
Rs(Φn,Φr)− C(Φn,Φr)

]

∆s(pT) = exp

[

−
∫

dΦ′
r
Rs(Φn,Φ

′
r)

B(Φn)
θ
(
pT

′ − pT

)
]

Easy to prove that dσ ′ is equivalent to dσ . In other words, the part of the real cross section

that is treated with the shower technique can be varied.



Rs =
h2

p2T + h2
R

R f =
p2T

p2T + h2
R

agrees with NLO at high pT

No new features appear in all the

other distributions

High pT cross section and dips are

unrelated issues



Why is there a dip in MC@NLO?

Write the MC@NLO hardest jet cross section in the POWHEG language. Hardest emission can be

written as [Nason 2004]

dσ = BHW dΦn
︸ ︷︷ ︸

S event

[

∆HW(pmin
T ) + ∆HW(pT)

RHW(Φn+1)

B(Φn)
dΦr

]

︸ ︷︷ ︸

HERWIG event

+
[

R(Φn+1) − RHW(Φn+1)
]

dΦn+1
︸ ︷︷ ︸

H event

BHW(Φn) = B(Φn) +V(Φn) +
∫ [

RHW(Φn,Φr)− C(Φn,Φr)
]

dΦr

∆HW(pT) = exp

[

−
∫

dΦ′
r
RHW(Φn,Φ

′
r)

B(Φn)
θ
(
pT

′ − pT

)
]

Like POWHEG with







Rs = RHW

R f = R− RHW ⇐= can be negative

This formula illustrates why MC@NLO and POWHEG are equivalent at NLO!

But differences can arise at NNLO. . .
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At high pT the cross section goes as

dσ ≈
[
BHW(Φn)

B(Φn)
RHW(Φn+1) + R(Φn+1)− RHW(Φn+1)

]

dΦn+1

= R(Φn+1)
︸ ︷︷ ︸

no dip

dΦn+1 +

(
BHW(Φn)

B(Φn)
− 1

)

︸ ︷︷ ︸

O(αs) but large for Higgs

RHW(Φn+1)
︸ ︷︷ ︸

pure HERWIG dip

dΦn+1

So: a contribution with a dip is added to the

exact NLO result.

The contribution is O(αsR), i.e. NNLO

Can we test this hypothesis?

Replace BHW → B in MC@NLO.

The dip should disappear. . .

No visible dip is present.



HERWIG and HERWIG++ studies

[Hamilton, Richardson and Tully] arXiv:0903.4345

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig dead zone overlap

[ LHC mH=115 GeV ]

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig++ dead zone

[ LHC mH=115 GeV ]

Both HERWIG and HERWIG++ have a dead radiation region corresponding to

central rapidity and high energy.

Dip in central region in HERWIG can be attributed to the dead zone.
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Higgs boson production at the LHC

•• Why MC@NLO has a dip in the hardest jet rapidity?

ANSWER: because it is very sensitive to the dead zone in the HERWIG phase space

•• Why POWHEG has no dip? Is that because of the hardest pT spectrum?

ANSWER: NO, it does not depend on the hardest pT spectrum. POWHEG generate

by itself the hardest radiation.
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HERWIG and HERWIG++ studies

[Hamilton, Richardson and Tully] arXiv:0903.4345



Summary of MC@NLO and POWHEG comparisons

• Fairly good agreement on most distributions

• Areas of disagreement can be tracked back to NNLO terms, arising mostly be-

cause of the use of an NLO inclusive cross section (the B̄ function) to shower out

the hardest radiation.

• In POWHEG, since the hardest radiation is generated by POWHEG itself, one

has high flexibility in tuning the magnitude of these NNLO terms.

• For MC@NLO, these NNLO terms can generate unphysical behavior in physi-

cal distributions, reflecting the dead zones structure of the underlying shower

Monte Carlo.

Since MC@NLO uses the underlying Monte Carlo to generate the hardest emis-

sion, to remedy to these problems one has to intervene on the Monte Carlo itself
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Higgs boson production at the LHC

The NLO result is in reality a LO one =⇒ it depends uponα3
s (µR)

B(Φn,µR) = B(Φn) +V(Φn,αs(µR)) +
∫

dΦr

[
R(Φn,Φr,αs(µR)) − C(Φn,Φr)

]

dσ = B(Φn,µR) dΦn

{

∆
(
Φn, p

min
T

)
+ ∆(Φn, pT)

R(Φn,Φr)

B(Φn)
dΦr

}

∆(Φn, pT) = exp

[

−
∫

dΦ′
r
R(Φn,Φ

′
r,αs(kT))

B(Φn)
θ
(
kT(Φn,Φ

′
r

)
− pT)

]



Higgs boson production at the LHC
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Higgs boson production at the LHC

NNLO result obtained with HNNLO by Catani & Grazzini
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Single-top production + spin correlations

g

u

t

d

b



Single-top production + spin correlations

p
rel, j1
T = ∑

i∈ j1

|~ki ×~p j1 |
|~p j1 |

b

u

b

l

d

ν

t

θ = angle between the charged lepton l̄ and the hardest jet (d quark), in the top rest frame



Z + 1 jet: POWHEG+HERWIG with NLO



Z + 1 jet: POWHEG+HERWIG with NLO

Distributions sensitive to more than two jets show a noticeable difference

All others in agreement with NLO

First process not present in MC@NLO
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The POWHEG BOX

Automatic implementation of POWHEG for generic NLO processes

More precisely, the user must supply

✓ the Born phase space

✓ the lists of Born and real processes (i.e. uū→ e+e−gg)

✓ the Born squared amplitudes B = |M|2, Bi j and B j,µν , for all relevant partonic

processes. Bi j is the color-ordered Born amplitude squared, B j,µν is the spin-

correlated amplitude, where j runs over all external gluons in the amplitude.

All these amplitudes are common ingredients of a NLO calculation.

✓ The real squared amplitude.

✓ The finite part of the virtual amplitude.

All the rest will be done automatically! The user should not worry about the

subtraction scheme we use and all the other details.
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The POWHEG BOX

Use the FKS (Frixione-Kunszt-Signer) subtraction scheme according to the general for-

mulation of POWHEG given in [Frixione, Nason and C.O., 2007] (FNO), hiding all FKS

implementation details.

In other words, the user needs not to know it!

It includes:

✓ the phase space for ISR and FSR, according to FNO.

✓ the combinatorics, the calculation of all singular regions in the real amplitude R, the

soft and collinear limit

✓ the calculation of B̄ (spinoff: NLO results using the FKS subtraction scheme)

✓ the calculation of the upper bounds for the generation of radiation

✓ the generation of radiation

✓ writing the event into the Les Houches interface

More testing needed. Further problems solved while we implement new processes.



The POWHEG BOX How-To

• parameter (nlegborn=5)
[
pp→(Z→e+e−) + j

]
in included file pwhg flst.h

flst nborn and flst nreal

• flst born(k=1..nlegborn,j=1..flst nborn): flavour of the k-th leg of the j-th Born graph

flst real(k=1..nlegreal,j=1..flst nreal): flavour of the k-th leg of the j-th real graph.

It is required that legs in the Born and real processes have to be ordered as follows:

– leg 1, incoming parton with positive rapidity

– leg 2, incoming parton with negative rapidity

– from leg 3 onward, final state particles, in the order: colorless particles first, massive

coloured particles, massless coloured particles.

The flavour is taken incoming for the two incoming particles and outgoing for the outgoing

particles. The flavour index is assigned according to PDG conventions, except for gluons,

where 0 is used instead of 21.

Example: pp→(Z→e+e−) + 2 j, the string [1,0,-11,11,1,0] labels the process dg→ e+e−dg

• init couplings
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• Born phsp(xborn) for Born phase space

xborn(1..ndim) array of random numbers ndim=(nlegborn-2)*3-4+2-1

– the Born Jacobian kn jacborn, Born momenta in the laboratory frame

kn pborn(0:3,1..nlegborn), Born momenta in the partonic CM frame

kn cmpborn(0:3,1..nlegborn) and Bjorken x (kn xb1 and kn xb2).

• set ren fac scales(mur,muf)

• setborn(p,bflav,born,bornjk,bmunu)

– the momenta p(0:3,1..nlegborn)

– the flavour string bflav(1..nlegborn)

– bornjk(1..nlegborn,1..nlegborn)

– the Born helicity-correlated squared amplitudes bmunu(0:3,0:3,j=1..nlegborn)

• setvirtual(p,vflav,virtual) returns finite part of the interference 2 Re (MB × MV),

after factorizing out (d = 4− 2ǫ)

N =
(4π)ǫ

Γ(1−ǫ)

(
µ2

Q2

)ǫ
αs

2π
• real ampsq(p,rflav,amp2)

– the momenta p(0:3,1..nlegreal)

– the flavour string rflav(1...nlegreal)

– amp2: spin and color summed and averaged real squared amplitudes



Conclusions

✓ NLO accuracy with Shower Monte Carlo has become a reality in recent

years.

✓ The POWHEGmethod is progressing, with new processes being included

✓ Progress in understanding agreement and differences betweenMC@NLO

and POWHEG

✓ Apath to full automation of POWHEG implementations of arbitraryNLO

calculation is open: the POWHEG BOX

✓ Many interesting problems remain to be addressed, and the NLO+Shower

community is steadily growing



Backup slides
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POWHEG: truncated shower

θ1 θ2 > θ1

•• if the shower is ordered in pT (for example PYTHIA), nothing else needs to be done

•• if the shower is ordered in angle (for example HERWIG), we need to generate cor-

rectly soft radiation at large angle.

– pair up the partons that are nearest in pT

– generate an angular-ordered shower associatedwith the paired parton, stopping

at the angle of the paired partons (truncated shower)

– generate all subsequent vetoed showers

This is a problem that affects all the angular-ordered shower Monte Carlo programs

when the shower is initiated by a relatively complex matrix element.

Truncated shower implemented only in HERWIG++
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tt̄ production

Good agreement for all observables considered. There are sizable differences that can be

ascribed to different treatment of higher terms. But more investigation needed (different

scale choices, no truncated shower, different hard/soft radiation emission,. . . ).
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ALPGEN vs MC@NLO: tt̄ + 1 jet

ALPGEN can generate samples of tt̄ + n jets. Can be compared to NLO +

Parton Shower [Mangano, Moretti, Piccinini & Treccani, hep-ph/0611129]

✓ advantage: better high jet multiplicity (exact Matrix Element)

✗ disadvantage: worse normalization (no NLO)

ALPGEN

•• Generation: PT
min = 30 GeV, ∆R = 0.7

•• Matching: ET
min = 30 GeV, ∆R = 0.7

Jet definitions

•• Tevatron: ET
min = 15 GeV, ∆R = 0.4, K factor = 1.45

•• LHC: ET
min = 20 GeV, ∆R = 0.5, K factor = 1.57
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ALPGEN vs MC@NLO: tt̄ + 1 jet

Rapidity y1 of the leading jet (highest pT).

Different shapes both at Tevatron and at the LHC



POWHEG: rapidity of the leading jet

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(
dσ

dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

POWHEG’s distribution as in ALPGEN: no dip present. The size of discrepancy can be

attributed to different treatment of higher-order terms. Is this “feature” really there?

The new pp→ tt̄ + jet at NLO [Dittmaier, Uwer, Weinzierl, hep-ph/0703120] shows no

dip too.



Z production: POWHEG + PYTHIA vs PYTHIA

For vector-boson production, PYTHIA generates radiation in a way similar to POWHEG.

Differences ascribed to the use of LO parton densities.



Z production: POWHEG + PYTHIA vs PYTHIA

Plots normalized to the NLO total cross section.
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Higgs boson production at the LHC

POWHEG + HERWIG vs MC@NLO

mH = 400 GeV
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HERWIG: rapidity of the leading jet



POsitive-Weight Hardest Emission Generator

[Nason, hep-ph/0409146]

is amethod, NOT (only) a set of programs

✓ generates events with positive weights

✓ can be interfaced to any Parton Shower Monte Carlo, if the vetoed shower

is implemented, according to the Les Houches Interface.

It is independent from parton-shower programs. POWHEG can be inter-

faced with both PYTHIA and HERWIG, or with your favorite showering

program,

✓ As far as the hardest emission is concerned, POWHEG guarantees:

•• NLO accuracy of (integrated) shape variables

•• Collinear, double-log, soft (large-Nc limit) accuracy of the Sudakov (in

fact, corrections that exponentiates are obviously OK)

✓ As far as subsequent (less hard) emissions, the output has the accuracy of

the SMC one is using.
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e+e−
→ hadrons

[Latunde-Dada, Gieseke and Webber, hep-ph/0612281]

Fit to e+e− data: better agreement than in the standard matrix-element correction approach.
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tt̄ production: POWHEG vs. NLO

• when ptt̄T → 0, POWHEG treats correctly the resummation of soft/collinear radiation

- when ptt̄T becomes large, POWHEG approaches the NLO result

• when Φtt̄ → 0, the emitted radiation becomes hard and POWHEG goes to the NLO result.
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ZZ production: POWHEG + HERWIG vs MC@NLO

No significant difference with MC@NLO [Nason and Ridolfi, hep-ph/0606275]



POWHEG + HERWIG vs POWHEG + PYTHIA

Agreement between POWHEG + HERWIG and POWHEG + PYTHIA

[Nason and Ridolfi, hep-ph/0606275]



W/Z production
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Color and hadronization

ShowerMonte Carlo programs assign color labels to partons. Only color connections

are recorded (in large Nc limit). The initial color is assigned according to hard cross

section.

Color assignments are used in the hadronization model.

Most popular models: Lund string model, cluster model.

In all models, color singlet structures are formed out of color connected partons, and

are decayed into hadrons, preserving energy and momentum.
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Typical dominant configuration at very high Q2

γ∗
→ hadrons

• Besides q → qg, also g → gg, g → qq̄ come into

play.

• In the typical configurations, intermediate an-

gles are of order of geometric average of up-

stream and downstream angles.

• Each angle is O(αs) smaller than its upstream

angle, and O(αs) bigger than its downstream

angle.

• As relative momenta become smaller, αs be-

comes bigger, and this picture breaks down.
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First branching

The probability of the first branching is independent of subsequent branchings be-

cause of Kinoshita-Lee-Nauenberg cancellation. It is given by

dPfirst = ∆i(t, t
′)

αS(t
′)

2π

dt′

t′
Pi, jk(z) dz

dϕ

2π

Upon integrating in z andϕ, and summing over jk, we have

dPfirst = ∆i(t, t
′)

αS(t
′)

2π

dt′

t′

∫

∑
( jk)

Pi, jk(z) dz
dϕ

2π
= d∆i(t, t

′)

i.e. the distribution is uniform in the Sudakov form factor.

The integral over the whole t′ range, from the minimum value t0 (IR cutoff) up to t,

is given by

∫ t

t0
dPfirst =

∫ t

t0
d∆i(t, t

′) = ∆i(t, t)− ∆i(t, t0) = 1− 0 = 1

as it should be for a correct probabilistic interpretation.



Final recipe I

Si(t, E) = ∆i(t, t0) 1+ ∑
( jk)

∫ t

t0

αS(t
′)

2π

dt′

t′

∫

dz
∫

dϕ

2π
∆i

(
t, t′
)
Pi, jk(z) S j

(
t′, zE

)
Sk

(
t′, (1− z)E

)

•• consider all tree graphs.

•• assign values to the radiation variables Φr (t, z andϕ) to each vertex.

•• at each vertex, i → jk, include a factor

dt

t
dz

αs(t)

2π
Pi, jk(z)

dϕ

2π
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Final recipe II

•• include a factor ∆i(t1, t2) to each internal parton i, from hardness t1 to hardness t2.

∆i(t1, t2) = exp



− ∑
( jk)

∫ t1

t2

dt

t

αS(t)

2π

∫

dz Pi, jk(z)
∫

dϕ

2π





Theweights ∆i(t1, t2) are called Sudakov form factors. They resum all the dominant

virtual corrections to the tree graph (in the collinear approximation). Notice also

that the inclusion of real and virtual corrections gives a net result of 1 (cancellation

of collinear singularities in inclusive quantities).

•• include a factor ∆i(t , t0) on final lines (t0 = IR cutoff)
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Actual implementation of the shower algorithm

We start from a given value of the ordering variable t. We want to generate the value

t′ for the next emission, according to the probability

dPfirst = ∆i(t, t
′)

αS(t
′)

2π

dt′

t′

∫

∑
( jk)

Pi, jk(z) dz
dϕ

2π
= d∆i(t, t

′)

Since this is an exact differential form, we proceed as in the case we want to gener-

ate a random variable x according to a distribution function f (x), whose indefinite

integral is known, starting from a uniform random variable r

dP = f (X) dX = 1 dR where f (X) dX = dF(X)

∫ x

xmin

f (X) dX = F(x) =
∫ r

0
1 dR = r =⇒ x = F−1(r)
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Actual implementation of the shower algorithm

✓ generate a hard process configuration with a probability proportional to its parton-level cross

section. Parton densities are evaluated at the typical “high” scale Q of the process

✓ for each final-state colored parton, generate a shower

•• set t = Q2

•• generate a uniform random number 0 < r < 1

•• solve the equation ∆i(t, t
′) = r for t′

•• if t′ < t0 stop here (final state line). Begin

hadronization

•• if t′ > t0, generate z, jkwith probability Pi, jk(z),

and 0 < ϕ < 2π uniformly. Assign energies

E j = zEi and Ek = (1− z)Ei to partons j and

k. The angle θ between their momenta is fixed

by t′ and with ϕ their direction is completely

specified

•• restart shower from each of the two branched

parton j and k, setting the ordering parameter

t = t′.



Shower algorithm

✓ for each initial-state colored parton, generate a shower in a similar way, but us-

ing a “trick”: the backward evolution (Sjöstrand)

f hi (t′, x) ∆(t, t′)
f hi (t, x)

= r

where f hi is the parton density for the colliding hadron h, where parton i carries

a momentum fraction x = Ei/Eh

Some momentum reshuffling is needed in order to preserve local (at each vertex)

and global momentum conservation
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Angular ordering

Mueller (1981) showed that angular ordering is the correct choice

dθ

θ

αs

(
p2T
)

2π
P(z) dz

θ1 > θ2 > θ3 . . .

p2T = E2z2(1− z)2θ2

αs(p2T) for a correct treatment of charge renormalization in soft region (p2T equals to

the maximum virtuality of the gluon line).

∆i(t, t
′) = exp



−
∫ t

t′

dt

t

∫ 1−
√

t0
t

√
t0
t

dz
αs(p2T)

2π ∑
( jk)

Pi, jk(z)





≈ exp






− ci
4πb0

[

log
t

Λ2
log

log t
Λ2

log t0
Λ2

− log
t

t0

]t

t′






(cq = CF , cg = 2CA)

Sudakov dumping stronger than any power of t.
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Color coherence

Soft gluons emitted at large angles from final-state partons add coherently

• angular ordering accounts for soft

gluon interference.

• intensity for photon jets = 0

• intensity for gluon jets = CA instead

of 2CF + CA

In angular-ordered shower Monte Carlo, large-angle soft emission is generated first.

Hardest emission, i.e. highest pT = E z(1− z)θ, in general, happens later.

Carlo Oleari Shower Monte Carlo + NLO: POWHEG 99



Some available codes

•• COJETS Odorico (1984)

•• ISAJET Paige+Protopopescu (1986)

•• FIELDAJET Field (1986)

•• JETSET Sjöstrand (1986)

•• PYTHIA Bengtsson+Sjöstrand (1987), Sjöstrand+Skands (2004)

•• HERWIG Marchesini+Webber (1988),

Marchesini+Webber+Abbiendi+Knowles+Seymour+Stanco (1992)

•• ARIADNE Lönnblad (1992)

•• SHERPA Gleisberg+Höche+Krauss+Schälicke+Schumann+Winter (2004)
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Available accuracy

collinear soft-collinear soft large-Nc soft

PYTHIA leading partial no no

HERWIG leading leading no no

ARIADNE partial partial leading no

PYTHIA6.4 partial partial leading no

SHERPA leading partial no no

One can realistically aim at

leading collinear, leading double log, leading soft in large-Nc limit

Soft effects for finite Nc require matrix exponentiation in the Sudakov form factor.

Carlo Oleari Shower Monte Carlo + NLO: POWHEG 101



New developments

•• Interfacing Matrix Elements (ME) generators with Parton Showers : CKKW matching

[Catani, Krauss, Küen, Webber], MLMmatching [Mangano]

•• Interfacing NLO calculations with Parton Showers: MC@NLO [Frixione, Webber],

POWHEG [Nason]

Several other approaches have appeared

•• e+e− → 3 partons [Kramer, Mrenna, Soper]

•• Shower by antenna factorization [Giele, Kosower, Skands]

•• Shower by Catani-Seymour dipole factorization [Schumann, Krauss]

•• Shower with quantum interference [Nagy, Soper]

•• Shower by Soft Collinear Effective Theory [Bauer, Schwartz]

•• Shower from the dipole formalism [Dinsdale, Ternick, Weinzierl]

Up to now, complete results for hadron colliders only from MC@NLO and POWHEG.

Carlo Oleari Shower Monte Carlo + NLO: POWHEG 102



NLO + Parton Shower

LO-ME good for shapes. Uncertain absolute normalization

αn
s (2µ) ≈ αn

s (µ)
(
1− b0αs(µ) log(4)

)n ≈ αn
s (µ)

(
1− nαs(µ)

)

For µ = 100 GeV,αs = 0.12, normalization uncertainty:
W + 1J W + 2J W + 3J

±12% ±24% ±36%

To improve on this, we need to go to NLO

•• Positive experience with NLO calculations at LEP, HERA and Tevatron

•• NLO results are cumbersome to compute: typically made up of an n-body (Born

+ virtual + soft and collinear remnants) and (n + 1)-body (real emission) terms,

both divergent (finite only when summed up).

•• Merging NLO with shower is a natural extension of present approaches.
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NLO + Parton Shower

The main problem in merging a NLO result and a Parton Shower is not to

double-count radiation: the shower might produce some radiation already

present at the NLO level.

LO: NLO:
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POWHEG: how it works

1. POWHEG, POsitive Weight Hardest Emission Generator, [Nason,

hep-ph/0409146], generates first a partonic event with just one single emission, at

NLO level, and with the correct probability in order not to have double-counting

coming from (subsequent) radiation. The pT of the produced radiation works as an

upper cutoff for the pT’s of the entire subsequent shower.

2. The event is written on a file using the standard Les Houches Interface and is pro-

cessed by the Parton Shower program (HERWIG, PYTHIA. . . ), that showers the

event, but with a pT less than the pT generated by POWHEG (pT veto).

•• if the shower is ordered in pT (for example PYTHIA), nothing else needs to be

done

•• if the shower is ordered in angle (for example HERWIG), we need to generate

correctly soft radiation at large angle.

– pair up the partons that are nearest in pT

– generate an angular-ordered shower associated with the paired parton, stop-

ping at the angle of the paired partons (truncated shower)

– generate all subsequent vetoed showers
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Example of truncated shower: e+e−

• nearby partons: 1 and 2

• truncated shower: 1 and 2 pair, from θ up to

a maximum angle. The truncated shower rein-

troduces coherent soft radiation from 1 and 2

at angles larger thanθ (angular-ordered shower

Monte Carlo programs generate those earlier).

• 1 and 2 shower from θ to cutoff

• 3 showers from maximum to cutoff

Truncated showers not yet implemented.

No evidence of effects from their absence in ZZ and e+e− production. Might be some

effects in heavy-quark production.
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NLO calculations

We can always parametrize the (n + 1)-body phase space Φn+1 in terms of the Born phase

space Φn and three radiation variables Φr: Φn+1 = {Φn,Φr}

〈O〉 =
∫

Odσ =
∫

dΦn O(Φn) [B(Φn) +Vb(Φn)] +
∫

dΦn dΦr O(Φn,Φr) R(Φn,Φr)

where Vb is the (divergent) virtual differential cross section. The virtual and real-radiation

integrals are separate divergent. Their sum is finite (for any infra-red safe observable).

A typical subtraction method re-organize the integrals in the form

〈O〉 =
∫

dΦn O(Φn)

[

B(Φn) +Vb(Φn) +
∫

dΦr C(Φn,Φr)

]

+
∫

dΦn dΦr

[
O(Φn,Φr) R(Φn,Φr)−O(Φn)C(Φn,Φr)

]

︸ ︷︷ ︸

finite

Defining

V(Φn) = Vb(Φn) +
∫

dΦr C(Φn,Φr) ⇐= finite

we have

〈O〉 =
∫

dΦn O(Φn) [B(Φn) +V(Φn)]+
∫

dΦn dΦr [O(Φn,Φr) R(Φn,Φr)−O(Φn)C(Φn,Φr)]



NLO in SMC

Shower Monte Carlo (SMC) cross section for first emission (dΦr = dt dz dϕ)

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn)∆t0 +
∫

t0

dt

t
dz dϕO(Φn,Φr) ∆t

αs

2π
P(z)

}

with

∆t = exp

[

−
∫

t

dt′

t′
dz′ dϕ′ αs

2π
P(z′)

]

The expansion at orderαs gives the NLOSMC

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn) +
∫

t0

dt

t
dz dϕ [O(Φn,Φr)−O(Φn)]

αs

2π
P(z)

}

This is the inexact NLO correction implemented by the SMC

How do we reach exact NLO accuracy?
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Towards NLO accuracy

〈O〉 =
∫

dΦn O(Φn) [B(Φn) +V(Φn)]

+
∫

dΦn dΦr [O(Φn,Φr) R(Φn,Φr) −O(Φn)C(Φn,Φr)]

=
∫

dΦn O(Φn)

{

B(Φn) + V(Φn) +
∫

dΦr

[
R(Φn,Φr) − C(Φn,Φr)

]
}

+
∫

dΦn dΦr R(Φn,Φr) [O(Φn,Φr) −O(Φn)]

Define

B(Φn) = B(Φn) +V(Φn) +
∫

dΦr

[
R(Φn,Φr) − C(Φn,Φr)

]

〈O〉 =
∫

dΦn O(Φn) B(Φn) +
∫

dΦn dΦr R(Φn,Φr)
[
O(Φn,Φr)−O(Φn)

]

In NLOSMC, it was

〈O〉 =
∫

dΦn O(Φn) B(Φn) +
∫

dΦn dΦr B(Φn)
αs

2π
P(z)

1

t

[
O(Φn,Φr)−O(Φn)

]
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POWHEG

NLOSMC ↔ NLO : B(Φn) ↔ B(Φn) B(Φn)
αs

2π
P(z)

1

t
↔ R(Φn,Φr)

All-order emission probability in SMC

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn) ∆t0 +
∫

t0
dΦr O(Φn,Φr) ∆t

αs

2π
P(z)

1

t

}

with

∆t = exp

[

−
∫

dΦ′
r

αs

2π
P(z′)

1

t′
θ(t′ − t)

]

All order emission probability in POWHEG

〈O〉 =
∫

dΦn B(Φn)

{

O(Φn) ∆t0 +
∫

dΦr O(Φn,Φr) ∆t
R(Φn,Φr)

B(Φn)

}

∆t = exp

[

−
∫

dΦ′
r
R(Φn,Φ

′
r)

B(Φn)
θ(t′ − t)

]

with t = kT(Φn,Φr) and B(Φn) = B(Φn) +V(Φn) +
∫

dΦr
[
R(Φn,Φr)− C(Φn,Φr)

]

POSITIVE if B is positive (i.e. NLO < LO).



Accuracy of the Sudakov form factor

POWHEG’s Sudakov form factor has the form (with c ≈ 1)

∆t = exp

[

−
∫ Q2

t

dk2T
k2T

αs(c k2T)

π

{

A log
E2

k2T
+ B

}]

The next-to-leading log (NLL) Sudakov form factor has the form

∆NLL
t = exp

[

−
∫ Q2

t

dk2T
k2T

αs(k2T)

π

{(

A1 + A2
αs(k2T)

π

)

log
E2

k2T
+ B

}]

provided the color structure of the process is sufficiently simple (6 3 colored legs). Can

use this to fix c in POWHEG’s Sudakov form factor as suggested in Catani, Webber,

Marchesini, (1991). HERWIG uses this.

For colored legs > 4, exponentiation only holds at leading-log (LL) or LL + NLL in the

large-Nc limit (i.e. planar color structure of Feynman diagrams)

POWHEG’s Sudakov form factor is always LL accurate. NLL accurate for 6 3 colored

legs, NLL accurate in leading Nc in all cases.



Mathematical tricks

✓ To generate the underlying Born variables (Φn), distributed according to

B(Φn), one uses programs like BASES/SPRING or MINT, that, after a single

integration, can generate points distributed according to the integrand func-

tion.

✓ Use the veto technique and the highest-pT bid procedure, to generate the radi-

ation variables, distributed according to d∆i(t, t
′).

These tricks are well known to Monte Carlo experts.

We have collected a few of them in the appendixes of our paper

[Frixione, Nason and C.O., arXiv:0709.2092 [hep-ph]].
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POsitive-Weight Hardest Emission Generator

✓ it is independent from parton-shower programs. POWHEG can be interfaced

with both PYTHIA and HERWIG, or with your favorite showering program,

if the vetoed shower is implemented, according to the Les Houches Interface.

✓ it can use existing NLO results

✓ it generates events with positive weights

✓ As far as the hardest emission is concerned, POWHEG guarantees:

•• NLO accuracy on integrated quantities

•• collinear, double-log (soft-collinear), large-Nc-soft single-log of the Su-

dakov (in fact, corrections that exponentiates are obviously OK)

✓ As far as subsequent (less hard) emissions, the output has the accuracy of the

SMC one is using.

✗ no truncated shower implemented up to now. But this is a problem that af-

fects all the angular-ordered SMCwhen the shower is initiated by a relatively

complex matrix element.
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Existing implementations

The POWHEG method has already been successfully used in

•• pp→ZZ [Nason and Ridolfi, hep-ph/0606275]

•• e+e− → hadrons [Latunde-Dada, Gieseke and Webber, hep-ph/0612281]

e+e− → tt̄ with top decay [Latunde-Dada, arXiv:0806.4560]

•• pp→QQ (cc̄, bb̄, tt̄) with spin correlations [Frixione, Nason and Ridolfi,

arXiv:0707.3088].

•• pp→W/Z with spin correlations [Alioli, Nason, C.O. and Re,

arXiv:0805.4802; Hamilton, Richardson and Tully, arXiv:0806.0290].

•• pp→H [Alioli, Nason, C.O. and Re, arXiv:0812.0578]

All POWHEG implementations for hadronic colliders have been interfaced to

both PYTHIA and HERWIG.
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To appear soon

•• pp→H [Hamilton, Richardson and Tully, HERWIG++ group]

•• single-top production [Alioli, Nason, C.O. and Re]

•• pp→W/Z + 1 jet [Alioli, Nason, C.O. and Re]

We are working now on a general framework for the implementation of any NLO

process into the POWHEG formalism.

Given the Born, real and virtual amplitudes, combine them automatically to pro-

duce POWHEG events.

Truncated showers have been studied in e+e− → hadrons [Latunde-Dada,

Gieseke and Webber] and are included in the HERWIG++ framework [Bähr,

Gieseke, Gigg, Grellscheid, Hamilton, Plätzer, Richardson, Seymour and Tully,

arXiv:0812.0529]
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From NLO to POWHEG

POWHEG is a method, NOT (only) a set of programs!

POWHEG is fully general and can be applied to any NLO subtraction framework.

We have provided any user with all the formulae and ingredients to implement an

existing NLO calculation in the POWHEG formalism [Frixione, Nason and C.O.,

arXiv:0709.2092 [hep-ph]].

We have looked in detail at POWHEG in two subtraction schemes:

•• the Frixione, Kunszt and Signer scheme

•• the Catani and Seymour scheme.

We have discussed, in a pedagogical way, two examples:

•• e+e− → qq̄

•• qq̄→V

The fortran implementation of the POWHEG code for these two processes (and all

the others) can be found at

http://moby.mib.infn.it/~nason/POWHEG



Conclusions

✓ POWHEG is a viable method for interfacing NLO and Shower Monte Carlo programs

✓ It is easy to implement and does not require new NLO computations

✓ No commitment to a specific Shower Monte Carlo implementation is required

✓ It outputs positive, unweighted events, as in traditional ShowerMonte Carlo programs

✓ Several processes already available. More to come

✓ Anybody can work on it!

POWHEG is a method, not (only) a set of programs!

✓ We have collected and published material to make it easy for others to implement

POWHEG with their NLO calculations

http://moby.mib.infn.it/~nason/POWHEG

✓ A general framework for implementing arbitrary processes is work in progress
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