Electromagnetic Compatibility (EMC) in Modern Electronic Standards e.g. MicroTCA.4

Dr. Frank Ludwig (DESY) for the LLRF team at DESY
Hamburg, 04.12.2019
1 Why is EMC important for us?

- Example: Laser-RF-Locking, **not** optimized phase noise spectrum

A distortion free spectrum is a condition to achieve good time resolutions. Most of the distortions are self-made and can be fixed but some are related to EMC.

Do these distortion lines degrade the time resolution?

\[
\Delta t_{f_1,f_2}^2 = \frac{1}{(2 \pi f_0)^2} \int_{f_1}^{f_2} S_\phi(f) df
\]
1 Analog meets Digital in Modular Systems

- Commercial ADCs:

![Commercial ADCs Image]

Performance maintained?

![Performance maintained Image]

Spurfree spectral ADC data!

![Spurfree spectral ADC data Image]
1 Low-Level-Radio-Frequency (LLRF) Control

High-frequency regulation – main noise sources:

- Reference (MO)
- Actuator (ACT)
- Vector Modulator
- Controller
- FPGA
- ADC
- DAC
- Klystron
- Amplifier
- Waveguides
- Field Detector (DWC)
- FB Loop
- S_{\phi,MO}(f)
- S_{\phi,ACT}(f)
- S_{\phi,DWC}(f)
- S_{\phi,RES}(f)

Example:

- fs Cavity field stability requirements:
 - Amplitude stability: <0.005% = 5E-5
 - Phase stability: <0.005 deg, <10fs @1.3GHz
 - Typical signal levels in receivers are about 1V:
 - Measurement resolution must be <1V*1E-5=10uV
 - All voltages caused by EMC must be smaller than 10uV!

Typical PCB ground resistances are about 1mOhm:
- Maximum return ripple current 10uV/1mOhm=10mA

- EMC system planning
- EMC system packaging
1 EMC Zones – System Robustness to External Distortion

- **Rack-Level**

- **Crate-Level** (Modular systems e.g. MicroTCA.4)

 - Analog frontend, ADC, DAC
 - AMC RTM
 - FPGA
 - Digital Transmission Class D1.x
 - AMC RTM
 - FPGA
 - ADC, DAC
 - Analog frontend
 - JESD

 Challenge

 - AMC RTM
 - Analog Transmission Class A1
 - ADC, DAC
 - Analog frontend
 - AMC RTM
 - FPGA
 - ADC, DAC
 - Analog frontend

 Recommendation

 - <0.5mΩ

 Rack-Level

 - 50µΩ
2 AMC / RTM Zone: IF Detection for Cavity Field Regulation

XFEL 48-channel LLRF station:

- Supporting modules
- MicroTCA.4

- MTCA.4 incl. complete suite: LLRF/Diag./Interlocks/HOM
- Challenges:
 - Total: 27 RF station / 800 cavities / >3000 RF signals
 - Stability requirements < 0.01% & 0.01 deg (<10fs)
2 Signal Conditioning and Digital Processing

- High frequency Down-Converter
 (DRTM-DWC10, under license)

- Multi-Channel fast ADC Digitizer
 (SIS8300L2)

- 10 channel field detection
- S-band (700MHz - 4.0GHz)
- Resolution, 0.003%, < 10fs

- 10 channel ADCs (125Msps, 16-Bits)
- FPGA (Virtex6) pre-processing partial cavity vectors
- Low latency links via MTCA-backplane

Frontend Mixers
10 Channels
Differential IF Signals
10 channel ADCs AC, DC coupled
Single-ended
RF Signals
FPGA, LLL, SFPs
Differential LVDS
2 Signal Conditioning and Digital Processing

- 10 channel field detection
- S-band (700MHz - 4.0GHz)
- Resolution, 0.003%, < 10fs

- 10 channel ADCs (125Msps, 16-Bits)
- FPGA (Virtex6) pre-processing partial cavity vectors
- Low latency links via MTCA-backplane
2 LLRF-Systems: Channel performance

- Spectral purity: (1DUT)

 System's Fingerprint

 - Spectral purity: System's Fingerprint
 - Spur removed on active and ground side (EMC)
 - Several years of group work!

 - Receiver narrow-band phase noise
 - < 0.002°, <4.2fs (1.3GHz)
 - < 0.004°, <9.2fs (1.3GHz)
2 AMC / FMC Zone: Coarse Bunch-Arrival Time Monitor

- **DFMC-DS500**
 - direct sampling digitizer
 - 12 bits, 0.5 - 1 GSP/s
 - ADC 2.7 GHz @ 3dB
 - SE → DIFF Amplifiers (4.8 GHz)

- Front panel has no direct connection to GND
- hexagon stand-off no direct connection between carrier GND and mezzanine GND
- RF connector GND is isolated from front panel

Courtesy of J. Zink

- f_s = 500 MHz, f_in = 125 MHz
- FFT: mean of 100 x 8000 samples
- f_s = 500 MHz, f_in = 1.3 GHz
- FFT: 8000 samples
Distortions current paths and its reduction:

- Modulate ADC-CLK section
- Couple into differential inputs
- Couple into single-ended sections
- ESD-Strip or single-ended connector
- Bypassed to Chassis
- ESD-Strip
3 Grounding configurations in MicroTCA.4

Properties of the Ground System in MicroTCA.4 for Z3 analog transmission:

- Return currents and signals share the same ground, all slots share one ground.
- Available shorts: Chassis-to-Ground (MicroTCA.4), Chassis-to-AMC, Chassis-RTM.
- No bypass structures for boards, the ground is unshielded.

Main distortions sources:

- AMC, RTM Loads
- Power Supply Module
4 Crate Ground Modelling

Distortion Rejection:

\[DR_i = 20 \log \left(\frac{U_i(s)}{U_{DIS}(s)} \right) \]

\[U_{DIS}(s) = \sum_{i=1}^{N} H_{DIS,i}(s)U_i(s) \]

\[U_{GND}(s) = \sum_{i=1}^{N} H_{GND,i}(s)U_i(s) \]
5 EMC Optimization

Improved local AMC, RTM ripples (active side)
approx. 10...20dB

Reduction of power-supply ground-chassis distortions
approx. 10...20dB

Improved the ground by return current redistribution
approx. 10...20dB

Short ground-chassis distortions of the power supplies
approx. 10dB

Bypass AMC, RTM ground distortions into the chassis
approx. 10dB

Improved the receivers CMR (project specific)
approx. 10dB
5 EMC Optimization

- Reduction of source ground-chassis distortions of the power supplies

![Graph showing reduction of distortions](image1)

- Reduction of AMC return ripples, Improved local AMC, RTM filter chains

![Diagram of filter chains](image2)

- Reduction of AMC return ripples
- Decoupling of AMC modules +12V

- Reduction of
 - DC/DC chopper lines,
 - Distortions and noise

- LDO: LF noise reduction <1MHz
- RF-filter: RF noise reduction >1MHz for ADCs, ultra-low clock jitter etc.
5 Measuring Ground Distortions

- Measuring the Ground-Chassis Distortions

DAMC-EMI Functions:
- Ground-to-Chassis measurements
- Power supplies measurements
- Voltage ground prober
- Vibrations measurements
- Ground influences from RTMs
System Partitioning / Packaging for < -80dB Stability

- **CAL**
- **FR-END**
- **ADC**
- **FPGA**

Strongly coupled together, except EMC in the information band is fully under control.

JESD interface towards an isolated FPGA

Problem of commercial digitizers in standards without frontends

High Frequency Applications

<table>
<thead>
<tr>
<th>MicroTCA.4 Configuration</th>
<th>AMC: ADC ext.: FR-END</th>
<th>AMC or RTM: FR-END + ADC</th>
<th>AMC: ADC RTM: FR-END</th>
<th>Proprietary</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Depend on EMC</td>
<td>Good, Excellent for optical inputs</td>
<td>Good, Excellent for optical inputs</td>
<td>Excellent</td>
</tr>
<tr>
<td>-</td>
<td>Very good</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>-</td>
<td>Excellent</td>
<td>Excellent with Z3 Class</td>
<td>Poor</td>
<td></td>
</tr>
</tbody>
</table>

Baseband Applications

<table>
<thead>
<tr>
<th>MicroTCA.4 Configuration</th>
<th>AMC: ADC ext.: FR-END</th>
<th>AMC or RTM: FR-END + ADC</th>
<th>AMC: ADC RTM: FR-END</th>
<th>Proprietary</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Depend on EMC (strongly)</td>
<td>Depend on EMC, Excellent for optical inputs</td>
<td>Depend on EMC, Excellent for optical inputs</td>
<td>Excellent</td>
</tr>
<tr>
<td>-</td>
<td>Very good</td>
<td>Very good</td>
<td>open - to be tested</td>
<td>Excellent</td>
</tr>
<tr>
<td>-</td>
<td>Excellent</td>
<td>Excellent with Z3 Class</td>
<td>Poor</td>
<td></td>
</tr>
</tbody>
</table>

- Problem of commercial digitizers in standards without frontends

- **CAL**: adressed in this presentation
6 Future EMC Challenges: MicroTCA.4 digital Upgrades

- **MicroTCA.4 AMC Backplane Connections PCIe gen5:**
 - 10Gbase-KR Ethernet
 - Slim-pipe support ≥20Gbps NRZ per lane
 - Update fat pipes to support 32Gbps NRZ (and **56Gbps** PAM-4, 16GHz BW) per lane minimum (PCIe gen5, 200Gbase-KR4).

- **EMC related tasks:**
 - MTCA backplane connector crosstalk tests
 - Impact of moving MCH to the center to reduce channel length will be evaluated
 - Payload power per slot to 240W with better isolation
 - Ground-Chassis-Distortion to be improved by -20dB
 - Verification with next generation receivers
6 Future EMC Challenges: MicroTCA.4 Receiver Roadmap

- Improvement of Ground-Chassis Distortion by -20dB:

 Receiver Improvements (<1fs, <100as, SRF):
 - Non-IQ detector in a hybrid configuration with a CSI
 - Brute-force ADC or channel parallelization in Standards

- High-Q_ L_ Cavity CW-Operation:
 - at CMTB (DESY)

Courtesy of L.Springer

2020

2025?
Thanks for your attention!
2 eRTMs: Low Jitter RF and Clock Distribution

- Low-impedance bypass managed RF-Backplane

This avoids a complicated cable management.

- LO/CLK generation module
- Backplane manager
- Down-converter modules

<3fs, 1MHz BW (1.3GHz)

User slots for analog signals
Content

1. Why is EMC important?
2. High Performance Applications
3. EMC in MicroTCA.4 Systems
4. EMC Modelling and Optimization
5. Future EMC Challenges