ETH zürich

NA64 SEARCHING FOR HIDDEN SECTORS AT THE CERN SPS

Emilio Depero, ETH Zurich, Institute for Particle Physics and Astrophysics on behalf of the NA64 collaboration

Dark photon - motivation

Standard Model Lagrangian Additional U(1) symmetry describing the new force carried by a massive vector boson, **the Dark photon A'** Kinetic mixing term with the **standard photon**

$$\epsilon \sim 10^{-8} - 10^{-2}$$

E *H* zürich

Dark photons - signature at fixed target experiment

• The electron collides with heavy nuclei irradiating A' (dark-bremstrahlung) which can decay to:

Invisible mode

Dark photons - signature at fixed target experiment

• The electron collides with heavy nuclei irradiating A' (dark-bremstrahlung) which can decay to:

ETH zürich

The NA64 working principle to search for A' \rightarrow ⁻

TH zürich

The NA64 working principle to search for A' $\rightarrow x\bar{x}$

E *zürich* IPA The NA64 working principle to search for A' $\rightarrow \chi \bar{\chi}$ **HADRONIC CALORIMETER (HCAL) STANDARD MODEL:** $E_{ECAL}+E_{HCAL} = 100 \text{ GeV}$ **Missing energy** Events 100 40 65 Cel 2 ¹⁰⁰90 80 70 60 50 40 30 20 10 00 20 **ELECTROMAGNETIC** A' Signal: E_{HCAL}, Gev **CALORIMETER (ECAL)** ECAL < 50 GeV HCAL < 2 GeV

The NA64 collaboration

D. Banerjee,¹² V. E. Burtsev,¹⁰ A. G. Chumakov,¹⁰ D. Cooke,¹² P. Crivelli,¹² E. Depero,¹² A. V. Dermenev,⁴ S. V. Donskov,⁹ F. Dubinin,⁵ R. R. Dusaev,¹⁰ S. Emmenegger,¹² A. Fabich,³ V. N. Frolov,² A. Gardikiotis,⁸ S. G. Gerassimov,^{5,7} S. N. Gninenko,^{4,*} M. Hösgen,¹ A. E. Karneyeu,⁴ B. Ketzer,¹ D. V. Kirpichnikov,⁴ M. M. Kirsanov,⁴ I. V. Konorov,^{5,7} S. G. Kovalenko,¹¹ V. A. Kramarenko,^{2,6} L. V. Kravchuk,⁴ N. V. Krasnikov,⁴ S. V. Kuleshov,¹¹ V. E. Lyubovitskij,^{10,11} V. Lysan,² V. A. Matveev,² Yu. V. Mikhailov,⁹ D. V. Peshekhonov,² V. A. Polyakov,⁹ B. Radics,¹² R. Rojas,¹¹ A. Rubbia,¹² V. D. Samoylenko,⁹ V. O. Tikhomirov,⁵ D. A. Tlisov,⁴ A. N. Toropin,⁴ A. Yu. Trifonov,¹⁰ B. I. Vasilishin,¹⁰ G. Vasquez Arenas,¹¹ and P. Ulloa¹¹

(The NA64 Collaboration)

¹Universität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany
 ²Joint Institute for Nuclear Research, 141980 Dubna, Russia
 ³CERN, European Organization for Nuclear Research, CH-1211 Geneva, Switzerland
 ⁴Institute for Nuclear Research, 117312 Moscow, Russia
 ⁵P.N. Lebedev Physics Institute, 119 991 Moscow, Russia
 ⁶Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
 ⁷Technische Universität München, Physik Department, 85748 Garching, Germany
 ⁸Physics Department, University of Patras, 265 04 Patras, Greece
 ⁹State Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia
 ¹⁰Tomsk Polytechnic University, 634050 Tomsk, Russia
 ¹¹Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
 ¹²ETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland

46 Researchers From 13 institutions!

Sergei Gninenko NA64 spokesperson

The NA64 collaboration

D. Banerjee,¹² V. E. Burtsev,¹⁰ A. G. Chumakov,¹⁰ D. Cooke,¹² P. Crivelli,¹² E. Depero,¹² A. V. Dermenev,⁴ S. V. Donskov,⁹ F. Dubinin,⁵ R. R. Dusaev,¹⁰ S. Emmenegger,¹² A. Fabich,³ V. N. Frolov,² A. Gardikiotis,⁸ S. G. Gerassimov,^{5,7} S. N. Gninenko,^{4,*} M. Hösgen,¹ A. E. Karneyeu,⁴ B. Ketzer,¹ D. V. Kirpichnikov,⁴ M. M. Kirsanov,⁴ I. V. Konorov,^{5,7} S. G. Kovalenko,¹¹ V. A. Kramarenko,^{2,6} L. V. Kravchuk,⁴ N. V. Krasnikov,⁴ S. V. Kuleshov,¹¹ V. E. Lyubovitskij,^{10,11} V. Lysan,² V. A. Matveev,² Yu. V. Mikhailov,⁹ D. V. Peshekhonov,² V. A. Polyakov,⁹ B. Radics,¹² R. Rojas,¹¹ A. Rubbia,¹² V. D. Samoylenko,⁹ V. O. Tikhomirov,⁵ D. A. Tlisov,⁴ A. N. Toropin,⁴ A. Yu. Trifonov,¹⁰ B. I. Vasilishin,¹⁰ G. Vasquez Arenas,¹¹ and P. Ulloa¹¹

(The NA64 Collaboration)

Timeline

- > Proposed in 2014
- > $2015 \rightarrow$ First test beam
- March 2016→ approved by CERN SPS as NA64
- Beam time:
 - > 2016: 5 weeks
 - > 2017: 5 weeks
 - > 2018: 6 weeks

46 Researchers From 13 institutions!

Sergei Gninenko NA64 spokesperson

E *zürich*

Emilio Depero | 06.06.2019 | Patras

ETHZ- IPA

The NA64 setup – A' $\rightarrow x\bar{x}$ search – in real life

E *zürich*

Invisible searches – event selection and results

Control area:

> **AREA I**: dimuon pair produced in ECAL shower (more on next slide)

(2.84 X 10¹¹ EOT)

> **AREA II**: Electron-hadron production

Event Selection:

 10^{3}

 10^{2}

10

- Timing information
 - pileup suppression
 - Noise suppression
- > Clean incoming track:
 - Good incoming angle
 - No multiple hits
 - Momentum ~ 100 GeV
- Electron selected:
 - > SRD detected
 - Shower profile compatible
- No punchtrough:
 - No activity in VETO
 - No activity in HCAL

E *zürich*

Invisible searches – dimuon eve<u>nts</u>

IPA V

Invisible searches – exclusion plot

Invisible searches – constraint on light thermal matter

ETHZ- IPA

E *zürich*

Pseudo-Dirac and Majorana Thermal Dark Matter

For first time results better than previous beam dump experiments!

ETHZ- IPA

THzürich

Visible search – Light trough a wall experiment

Visible search – Light trough a wall experiment

Visible search – Results for 2016-2018 statistics

Event Selection:

- > Neutral exiting WCAL \rightarrow No activity in V2
- > Leaking in decay volume \rightarrow single e-m shower in ECAL
- Charged particle in decay volume \rightarrow signal in S4
- > No hadron/large scattering \rightarrow no activity in HCAL/VETO

Future prospects Dark sector physics interesting framework to explain dark matter NA64 ideal experiment to probe or rule out many candidates

Process	New Physics
e^- beam	
$A' \to e^+e^-$, and	Dark photon
$A' \rightarrow invisible$	
$A' \to \chi \overline{\chi}$	sub-GeV Dark Matter (χ)
$X \rightarrow e^+e^-$	new gauge X - boson
milliQ particles	Dark Sector, charge quantisation
$a \rightarrow \gamma \gamma, invisible$	Axion-like particles
μ^- beam	
$Z_{\mu} \rightarrow \nu \nu$	gauge Z_{μ} -boson of $L_{\mu} - L_{\tau}, < 2m_{\mu}$
$Z_{\mu} \to \chi \overline{\chi}$	$L_{\mu} - L_{\tau}$ charged Dark Matter (χ)
milliQ	Dark Sector, charge quantisation
$a_{\mu} \rightarrow invisible$	non-universal ALP coupling
$\mu - \tau$ conversion	Lepton Flavour Violation
π^-, K^- beams	Current limits, PDG'2018
$\pi^0 \rightarrow invisible$	$Br(\pi^0 \to invisible) < 2.7 \times 10^{-4}$
$\eta \rightarrow invisible$	$Br(\eta \rightarrow invisible) < 1.0 \times 10^{-4}$
$\eta' \rightarrow invisible$	$Br(\eta' \to invisible) < 5 \times 10^{-4}$
$K^0_S ightarrow invisible$	no limits
$K_L^0 \to invisible$	no limits

After long shutdown 2 in 2021:

- Continue electron program, reach 5x10¹² EOT for A' → invisible to cover completely LDM Majorana and Pseudo-Dirac
- * explore remaining parameter space for X \rightarrow e⁺ e⁻
- Proposed searches of dark sector in NA64 leptonic and hadronic beams with unique sensitivites:
 - Search for Z' coupled to muon with M2 beamline at CERN (160 GeV/c muon)

Acknowledgments

NA64 collaboration and in particular P.Crivelli and S. Gninenko

CERN

ETH Zurich group: Prof. André Rubbia Post docs: B. Radics, L. Molina Bueno Past members: D. Banerjee, D. Cooke Undergraduate Students: Z. Xingyu, S. Emmenegger, M. Bachmayer, U. Molinatti,

Funding: ETH Zurich and SNSF Grant No. 169133 (Switzerland), PI: **P. Crivelli**

SWISS NATIONAL SCIENCE FOUNDATION

Beyond

ETH zürich

Signature of dark photons at fixed target experiment

TH zürich

ETHZ- IPA