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Origin of the Standard Model

The Standard Model summarizes the known facts around sub-TeV.
> A gauge theory with

» group SU(3) x SU(2) x U(1)

u

» fermions l(1,2)7%,q(3,2) , °(§, 1)7;,d°(§7 1)%,e°(1, 1),

5 3
» X3 repetition
» boson h(1,2)

» renormalizable interactions



Origin of the Standard Model

The Standard Model summarizes the known facts around sub-TeV.
> A gauge theory with why?
» group SU(3) x SU(2) x U(1) why?
» fermions /(1, 2)7% ,q(3,2) 1 u(3, 1)7% ,d°(3, 1)% ,€°(1,1), why?
» X3 repetition
» boson Ai(1,2) why?

» renormalizable interactions why?



E,, Unification

Wisdom from Grand Unification: the structure of the SM is far from arbitrary
> SU(5)

> The minimally unifying simple group.
> 5,10 harbors all quarks and leptons.

> SO(10)

> 1,c + 54 10 = 16 all fermions in one single repr.
> Includes R-handed neutrino
A good explanation about small neutrino mass “See-saw mech”.

» E¢
> 16 4 10, + 1y = 27 also unifies Higgs
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E,, Unification

Wisdom from Grand Unification: the structure of the SM is far from arbitrary
> SU(5)

> The minimally unifying simple group.
> 5,10 harbors all quarks and leptons.

> SO(10)

> 1,c + 54 10 = 16 all fermions in one single repr.
> Includes R-handed neutrino
A good explanation about small neutrino mass “See-saw mech”.

» E¢
> 16 4 10, + 1y = 27 also unifies Higgs

> E7, Eg
> 78427+ TL+ 1 = 133 also unifies gauge bosons (vectorlike?)
> 133 4+56+56+1 =248

Unification along E, series: unique position of the SM: E3 x U(1)

oo oe



String theory

String theory may address such problems.

heterotic

(=

one-loop consistency  the shape of singularity

Predictions
» Gauge group Es x Eg or SO(32)
» Extra dimensions

> Spacetime supersymmetry

>



Symmetry breaking in extra dimension

Choice of non-simply connected internal space and background vector/scalar
A higher dim gauge fields Ay = Ap D As © A D ---
~~ —

4D gauge boson 4D scalars
» Constant (As) = conventional Higgs mech.: 4D vectorlike spectrum R + R
> Position dependent (As) = mx®: chiral: exclusively R or R

» Generalized and classified by Chern characters
F(monopole), F' A F(instanton), FAF A F . ..



Symmetry breaking in extra dimension

Choice of non-simply connected internal space and background vector/scalar
A higher dim gauge fields Ay = Ap D As © A D ---
~~ —

4D gauge boson 4D scalars
» Constant (As) = conventional Higgs mech.: 4D vectorlike spectrum R + R
> Position dependent (As) = mx®: chiral: exclusively R or R

» Generalized and classified by Chern characters
F(monopole), F' A F(instanton), FAF A F . ..

Dirac equation in higher dim

(iT" O + " (i0n — Am + 3wn))1h =0

> Eigenvalue of I (i0 — Aw 4+ ww ) =i Klooks like 4D mass
~

VEV geometry

> # degenerate massles states counted by index theorem. Ex. 6D

. . 1
ng — ng = indexi N = trF/\F/\F—gtrF/\trR/\R
6D

Gauge-Higgs unification: chiralty and repeted generations



From Ejy adjoint

Assuming Eg (to be justified later)

NN W

Under Es — SU(3) x SU(2) x U(1)y x SU(5) .,
248 — adjoints + ¢°(1, 1,5), +1(1,2,10)_, ,
+4(3,2,5), /6 +X(3,2,1) 5,6
+d°(3,1, 10), 5 + u‘(3,1, 5) s
A desirable spectrum!
From U(1)y x SU(5) 1 background instanton (F A F)

‘We have chiral solution to Dirac equation.



Monodromy

The fate of internal quantum numbers

248 — adjoints + ¢°(1,1,5), + (1,2, 10) ,,+....

How many ¢, [ in the low energy limit?

Instanton background reduces the field components under Weyl symmetry
“monodromy.”

In general SU(5) 1 has

S5 monodromy: 5! permuting all the weights of 5 |

Ex. 5.={t1,0, 13, 14,15} are globally ‘connected’ by Ss
» Just one kind of ¢°, . ..

> 3 generations from 3 zero modes of Dirac eq.



Monodromy

The fate of internal quantum numbers

248 — adjoints + ¢°(1,1,5), + (1,2, 10) ,,+....

How many ¢, [ in the low energy limit?

Instanton background reduces the field components under Weyl symmetry
“monodromy.”

In general SU(5) 1 has

S5 monodromy: 5! permuting all the weights of 5 |

Ex. 5.={t1,0, 13, 14,15} are globally ‘connected’ by Ss
» Just one kind of ¢°, . ..
> 3 generations from 3 zero modes of Dirac eq.
h+th t+nB t+t H+is
Ex.m={ pEhoREhoRTE }

1y + 15
Higgs doublets Ay, hy are not yet distinguihsed.



Z4 Monodromy

To distinguish SU(2) doublets /, iy, ha, we need more special monodromy
Mod out SU(5) 1 by Z4 monodromy.
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Z4 Monodromy

To distinguish SU(2) doublets /, iy, ha, we need more special monodromy
Mod out SU(5) 1 by Z4 monodromy.

1. Singles out #5:
the famous "B — L’ symmetry SU(5)gur X U(1)u C SO(10)cur

2. Now lepton is distinguished from Higgs
> {n,n st tsk—={n, 03,1}, {15}

q0(3,2,5) — ¢(3,2,4) +—q’(3,2,1)é

1

6
h+nh nH+8B nHh+ts 1H+1s
b+tz bHh+tts BH+Iis
B+t 13415
14+ 15

= 1(1,2,4) 1+ ha(1,2,4) 1, +75(1,2,2

30

1 L
2 27

15(1,2,10)

=



Yukawa coupling
Yukawa coupling originates from gauge invariant interaction

Yabe = /)\a NAp A AC

Emerges at a triple intersection of branes
> lhget : (G4t +1t6) + (1 +tw+16) + (t1—16) =0,  €jim #0
> qhuuc : (ti)+(_i_l‘/'_tﬁ)+(l‘/'+tﬁ) :07 l#]v

Lhge®

qhyu MSSM
qhad® superpotential
Lhyv*©

I/MI/X/I

Xh,d¢ nonvanishing
q'hgD° but X and ¢’
q'h,D’ are absent

B and/or L violating couplings absent
hy, le, lgd®, ud°d”

Superpotential is renormalizable MSSM superpotential without R-parity violating
terms—would be broken

W = Wassu (1 = 0) + myhyha + mpDD’
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F-theory

Type 1IB string theory SHE”) F-theory on a torus T

> 7=Co+ie ® i .

» The symmetry of a torus with comp struct 7
We compactify F-theory on a Calabi—Yau fourfold: 4D N = 1 SUSY

> 1 of 4 dimc is torus — nontrivial product on 3 dimcbase

elliptic (torus) fibered: shape of the torus varies, as we move around B

00 6 'ﬂﬂ

Singular torus locus S supports 8D worldvol gauge theory.



Gauge theory from geometry

F

1

Gauge coupling 7 = Cp + ig~" = CS of an extra torus

» Cartan subalgebra A;, = > Gump A wWip

» W* components M2 brane in F-theory wrapping on $°

D-brane  F-string  str. junction
» Shrinking sphere = singularity: massless string btwn the coincident branes

AYAYAY




Gauge theory from geometry

F

1

Gauge coupling 7 = Cp + ig~" = CS of an extra torus

» Cartan subalgebra A;, = > Gump A wWip

» W* components M2 brane in F-theory wrapping on $°

D-brane  F-string  str. junction
» Shrinking sphere = singularity: massless string btwn the coincident branes

AYAYAY

The connectedness of Lie algebra = geometry

0000089
ex. Eg ‘ O—Q—Q—Q—g—O—Q y2 =X+7

Classified and tabulated: Just refer to tables.




The shape of singularities

Singularities are classified: They are all special cases of the elliptic equation

2 3 oy .
y =X describing the torus.

type group a) Y ay ay ag A f g
Iy smooth 0 0 0 0 0 0 0 0

I u(1) 0 0 1 1 1 1 0o 0
o unconven. 0 0 k k 2%k — 1 2%k — 1 0 0
By SU(2k — 1) 0 1 k—1 k 2%k — 1 2k + 1 0o 0
13 Sp(k) 0 0 k k 2% 2% 0o 0
5y SU(2k) 0 1 k k 2% 2% 0o 0

| — 1 1 1 1 1 2 1 1

11 sU(2) 1 1 1 1 2 3 1 1
vns unconven. 1 1 1 2 2 4 1 1
vs sU(3) 1 1 1 2 3 4 1 1
o™ Gy 1 1 2 2 3 6 2 3
Iy 55 SO(7) 1 1 2 2 4 6 2 3
Iy ® so(8)* 1 1 2 2 4 6 2 3
150, SO(4k + 1) 1 1 k k41 2k 2%k + 3 2 3
55 SO(4k + 2) 1 1 k k41 2% + 1 2%+ 3 2 3
1;‘A“;, SO(4k + 3) 1 1 k+1 k+1 2% + 1 2k + 4 2 3
5, SO(4k + 4)* 1 1 k41 k41 2% + 1 2% + 4 2 3
v ns Fy 1 2 2 3 4 8 3 4
v*s Eg 1 2 2 3 5 8 3 4
mr* E; 1 2 3 3 5 9 3 5
n* Eg 1 2 3 4 5 10 3 5
non-min — 1 2 3 4 6 12 4 6

Modding out by monodromy: we can get all the possible Lie algebra [Tate|
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Singularities are classified: They are all special cases of the elliptic equation

2 3 oy .
y =X describing the torus.

type group a) Y ay ay ag A f g
Iy smooth 0 0 0 0 ) 0 0 0

I u(1) 0 0 1 1 1 1 0o 0
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non-min — 1 2 3 4 6 12 4 6

Modding out by monodromy: we can get all the possible Lie algebra [Tate|

We have 8D gauge symmetry of the same name of singularity



Matter and localization

Matter comes from the ‘off-diagonal” component of gaugino
Ex. From U(m + n) — U(m) x U(n)

(m+n)* — (m’,1) n’) n

-5

Y =x+(@—a)"(z—b)



Matter and localization

Matter comes from the ‘off-diagonal” component of gaugino
Ex. From U(m + n) — U(m) x U(n)

(m+n)* — (m’,1) n’)

-5

Y =x+(@—a)"(z—b)

+

Focusing on one gauge brane, matters localized around ‘matter’ curves on S

Ex. From Es — SO(10) x U(1),78 — 45 + 16 + 16 + 1, spinorial 16 obtainable.
For this reason, in SU(5), ea[g.ﬂsslﬂaﬁ 107?5° allowed (forbidden in perturbative
D-branes)



Spectral cover

The background instanton/Higgs bundle of U(1)y x SU(5) . is

described by spectral covers ‘flavor branes.’
Describing a SUSY bundle for elliptic fibered space



Spectral cover

The background instanton/Higgs bundle of U(1)y x SU(5) . is
described by spectral covers ‘flavor branes.’

v

A brany description: #; positions reflecting monodromy

(aos + a])(bos5 4 b1t 4 bys® 4+ bys® 4 bys + bs)
——
0= U(l)y SU(5) 1

Reflecting Ss monodromy
bm/bo elementary symmetric polynomials of deg. m of #1, ...fs.

ao = 1 by anomaly cancellation
The only combinations b; + bi—1a;

Other monodromies, e.g Z4 by further tuning b,,
U(1)y: the trace part of SU(5) 1

by = 7[11b(), ap ~ *CI(S)



The SU(3) x SU(2) x U(1)y singularity
Symmetry breaking described by the spectral cover,
bi + bi—1a

contains also the info. about the unbroken part.



The SU(3) x SU(2) x U(1)y singularity
Symmetry breaking described by the spectral cover,
bi + bi—1a

contains also the info. about the unbroken part.

Recall, the singular torus y* = for the SM is de-

scribed using the above parameters

a; = —(bs + bya;) + 0(z)
& = (bs + byay)z + 0(z%)
a3 = —(bs + bya )(arbs + 2)z+ 0(2)
as = (by + bray)(arbs + z)z2 + O(z4)
ag = bo(aibs +2)*z° + 0(:°)
A = (bs + arbs)* PYP2 Pyc Puc @ + Py PxQuz* + O(2).



The SU(3) x SU(2) x U(1)y singularity
Symmetry breaking described by the spectral cover,
bi + bi—1a

contains also the info. about the unbroken part.

Recall, the singular torus y* = for the SM is de-

scribed using the above parameters

a; = —(bs + bsa;) + 0(z)
& = (bs + byay)z + 0(z%)
a3 = —(bs + bya )(arbs + 2)z+ 0(2)
as = (by + bray)(abs +z)22 + O(z4)
ag = bo(arbs +2)*2° + 0(°)
A = (bs + ayby)*PYP} Pac Puc 2 + Py, PxQsz" + 0(2).
» On S = {A ~ 0} we have 8D worldvolume gauge theory of
SU(3) x SU(2) x U(1)y
» From tables, generically SU(3) at z = 0. (some simplification)
Very specially tuned so the actual symmetry is larger.

» Change of coordinate z <> z + a1 bs, the singularity looks like generically SU(2)
tuned upto O(2).



The SU(3) x SU(2) x U(1)y singularity

» a; = 0: SU(5) enhancement.
» In the weakly coupling limit f, g — oo, with f* /g finite,
Pyy = Py = Pec ~bs, P, =Py ~Rs,
A ~ biRs(bsa) +2)°z,

» Well known reduction of SU(5) — SU(3) x SU(2) x U(1)y

> U(1)y: relative center-of-mass
> Linearly equivalent z ~ z — a;bs ~ —t cf. parallel separation
> Parallel but intersecting o N o # 0 : (3,2) localized on the intersection.



Spectrum
4+1+1 factorization C; U C; U C}

4

1
1 3

The simplest flux on 4 part only
Y= (4—pi(n—c1))(Cino),
M =0,71=0.

matter matter curve living on M
X te — 0 Cy 0
q tp —0 C_,} 1
q t5 — 0 e —4
d- ti+15 =0 ¢y nrcy -3
D¢ i+ tigy =0 Cy N 7Cy 2
o’ fi+1ipp =0 CyNTCy 2
uC 416 — 0 Cyn rC} 1
u’ 15416 — 0 ¢ Ny —4
hl{ ‘i+’i+l+‘6"0 Cy N 7Cy 2
hg i+ tigs t16 >0 Cy N TCy 2
] ti+its+1tg —0 Cy N 7C -3
e i — 15 — 0 C4r7C} 1
! 15— 1 — 0 [SNake —4




Spectrum

4+1+1 factorization C; U C; U C} ratier ratter carve

Tiving on M
X te — 0 Cy 0
4 q tp —0 C_,} 1
1 q 15— 0 e 4
1 3 d- ti+15 =0 ¢y nrcy -3
2 D¢ i+ tigy =0 Cy N 7Cy 2
D’ i+ tipr =0 CyNTCy 2
u¢ 416 — 0 Cy N TC 1
u’ 15416 — 0 ¢ Ny —4
hy ‘i+'i+l+‘6"0 Cy N 7Cy 2
. h© t+1; +15 — 0 Cy N 7C, 2
d +2 6 4 4
The simplest flux on 4 part only | e 0 Cinre, -3
_ % _ e* i —1tg — 0 Cy N Cy 1
Y4 (4 /p4(77 Cl))(C4mU)v W 15— 15— 0 anc 4
M =0,7=0.
For trivial ap = 1,
» Matter curves for g, u, e¢ (€ 10) are linearly equivalent
lirvtitts ~ 1 — 16
» Spectrum obeys a unification relation
161 ng=ng=nwe=n=ne=ny,c = —An-(n—4c)
10 : Ny, =Np, =Np=Npy = -2X-(n—4a)
Choosing the base manifold S such that —An - (n — 4c¢1) =3

3 generations of quarks and leptons

plus 6 vectorlike Higgs doublets and tiplets

> no other exotics. 2-3 splitting problem



Z4 monodromy

Monodromy is encoded in the spectral cover
4

! % 3
2
1+1+4 structure

(U +arV)(doU 4 di V) (eoU* + et UV + e2U°V? + e3UV° + egV*) = 0.
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Z4 monodromy

Monodromy is encoded in the spectral cover
4

! % 3
2
1+1+4 structure

(U +arV)(doU 4 di V) (eoU* + et UV + e2U°V? + e3UV° + egV*) = 0.
Z4 monodromy needs just one tuning
e = eé + eg
/ 1
erfeg ~ tith + bz + B3ts + tat1, ey Jeo ~ titz + bots.
Down type quarks are decomposed into colored Higgses

4
Sy orbit H(ti + 1) ~ ey (—eoes + ereres — eres),
i<j

Two Z4 orbits give matter curves

B 2 (f 4 63) (6 + 1a) ~ €} /e,
ha: (1 +0) (04 16) (155 4 1) (ts + 1) ~ (€4 + eres — deges) /e



Actual matter homologies

X:CxNo=—-c1No

qg:CoNo=ocn(n—4c —x)

g :CyNo=o0Nn(—c1+x)
d1:(C—V)NCyp=0onN(n—4ci+2x)+(n—c1—x)Nx

D hg: 2(Cq—2U)N(Cp—4V) =on(n—4ci —x) + 1(n—x) N (n —4ci —x)

D' h: 3C,N(U+V)=0nN(n—2c1—x)+3(n—x)Nc

uyef 1 CaNCx =0onN(n—4dc —x)

u,e :CyNCx=0nN(—c+x)



Conclusion

SU(3) x SU(2) x U(1)y model
» Grand Unification is a compelling structure.
» Unique direction E3 x U(1)y is the commutant to SU(5) 1 x U(1)y in Eg
> Z4 monodromy: R-parity distinguishing Higgses from leptons

String theory/F-theory well-realizes unification with more degrees of freedom.
Construction of gauge singularity, spectral covers in F-theory

» Renormalizable MSSM superpotential

» Three generations of quarks and leptons, vectorlike Higgs doublets and triplets
mu-term and triplet masses, but without mixing of quarks.

» Partial flux on SU(4) part gives rise to SU(5), SO(10) GUT structure



