Towards MSSM from F-theory

Kang-Sin Choi

Kyoto University

based on 0910.2571 1003.2126* 1007.3843 *with Tatsuo Kobayashi

> SUSY 10, Bonn August 23, 2010

Origin of the Standard Model

The Standard Model summarizes the known facts around sub-TeV.

- ▶ A gauge theory with
- ▶ group $SU(3) \times SU(2) \times U(1)$
- $\blacktriangleright \ \text{fermions} \ l(\mathbf{1},\mathbf{2})_{-\frac{1}{2}}, q(\mathbf{3},\mathbf{2})_{\frac{1}{6}}, u^{\mathrm{c}}(\overline{\mathbf{3}},\mathbf{1})_{-\frac{2}{3}}, d^{\mathrm{c}}(\overline{\mathbf{3}},\mathbf{1})_{\frac{1}{3}}, e^{\mathrm{c}}(\mathbf{1},\mathbf{1})_{1}$
- ▶ ×3 repetition
- ▶ boson h(1,2)
- renormalizable interactions

Origin of the Standard Model

The Standard Model summarizes the known facts around sub-TeV.

- ► A gauge theory with why?
- group $SU(3) \times SU(2) \times U(1)$ why?
- ► fermions $l(\mathbf{1}, \mathbf{2})_{-\frac{1}{2}}, q(\mathbf{3}, \mathbf{2})_{\frac{1}{6}}, u^{c}(\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}}, d^{c}(\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}}, e^{c}(\mathbf{1}, \mathbf{1})_{1}$ why?
- ▶ ×3 repetition
- ▶ boson h(1,2) why?
- renormalizable interactions why?

E_n Unification

Wisdom from Grand Unification: the structure of the SM is far from arbitrary

- ► $SU(5) = E_4$
 - ▶ The minimally unifying simple group.
 - \triangleright 5, 10 harbors all quarks and leptons.
- ► $SO(10) = E_5$
 - $1_{\nu^c} + \overline{5} + 10 = 16$ all fermions in one single repr.
 - Includes R-handed neutrino A good explanation about small neutrino mass "See-saw mech".
- ► E₆
 - ▶ $16 + 10_h + 1_N = 27$ also unifies Higgs $10_h = 5_h + \overline{5}_h$.

E_n Unification

Wisdom from Grand Unification: the structure of the SM is far from arbitrary

- ► $SU(5) = E_4$
 - ▶ The minimally unifying simple group.
 - \triangleright 5, 10 harbors all quarks and leptons.
- ► $SO(10) = E_5$
 - $1_{\nu^c} + \overline{5} + 10 = 16$ all fermions in one single repr.
 - Includes R-handed neutrino A good explanation about small neutrino mass "See-saw mech".
- ► E₆
 - ▶ $16 + 10_h + 1_N = 27$ also unifies Higgs $10_h = 5_h + \overline{5}_h$.
- ► *E*₇, *E*₈
 - ▶ $78 + 27 + \overline{27} + 1 = 133$ also unifies gauge bosons (vectorlike?)
 - $133 + 56 + \overline{56} + 1 = 248$

E_n Unification

Wisdom from Grand Unification: the structure of the SM is far from arbitrary

- ► $SU(5) = E_4$
 - ► The minimally unifying simple group.
 - ightharpoonup 5, 10 harbors all quarks and leptons.
- ► $SO(10) = E_5$
 - $1_{\nu^c} + \overline{5} + 10 = 16$ all fermions in one single repr.
 - Includes R-handed neutrino A good explanation about small neutrino mass "See-saw mech".
- ► *E*₆
 - ▶ $16 + 10_h + 1_N = 27$ also unifies Higgs $10_h = 5_h + \overline{5}_h$.
- ► *E*₇, *E*₈
 - ▶ $78 + 27 + \overline{27} + 1 = 133$ also unifies gauge bosons (vectorlike?)
 - $133 + 56 + \overline{56} + 1 = 248$

Unification along E_n series: unique position of the SM: $E_3 \times U(1)$ [Ramond] [Olive]

String theory

String theory may address such problems.

Predictions

- ▶ Gauge group $E_8 \times E_8$ or SO(32)
- ► Extra dimensions
- Spacetime supersymmetry
- •

Symmetry breaking in extra dimension

A higher dim gauge fields
$$A_M = \underbrace{A_{\mu}}_{\text{4D gauge boson}} \oplus \underbrace{A_5 \oplus A_6}_{\text{4D scalars}} \oplus \cdots$$

- ► Constant $\langle A_5 \rangle$ = conventional Higgs mech.: 4D vectorlike spectrum $R + \overline{R}$
- ▶ Position dependent $\langle A_5 \rangle = mx^6$: chiral: exclusively R or \overline{R} [Landau]
- ▶ Generalized and classified by Chern characters $F(\text{monopole}), F \wedge F(\text{instanton}), F \wedge F \wedge F \dots$

Symmetry breaking in extra dimension

Choice of non-simply connected internal space and background vector/scalar

A higher dim gauge fields
$$A_M = \underbrace{A_{\mu}}_{\text{4D gauge boson}} \oplus \underbrace{A_5 \oplus A_6}_{\text{4D scalars}} \oplus \cdots$$

- ► Constant $\langle A_5 \rangle$ = conventional Higgs mech.: 4D vectorlike spectrum $R + \overline{R}$
- ▶ Position dependent $\langle A_5 \rangle = mx^6$: chiral: exclusively R or \overline{R} [Landau]
- ▶ Generalized and classified by Chern characters F(monopole), $F \land F$ (instanton), $F \land F \land F \dots$

Dirac equation in higher dim

$$(i\Gamma^{\mu}\partial_{\mu}+\Gamma^{m}(i\partial_{m}-A_{m}+\tfrac{1}{2}\omega_{m}))\psi=0$$

- Eigenvalue of $\Gamma^m(i\partial_m \underbrace{A_m}_{\text{VEV}} + \underbrace{\frac{1}{2}\omega_m}_{\text{geometry}}) \equiv i \, \text{Noks like 4D mass}$
- # degenerate massles states counted by index theorem. Ex. 6D

$$n_R - n_{\overline{R}} = \text{index}i \ \ \nabla = \int_{6D} trF \wedge F \wedge F - \frac{1}{8}trF \wedge trR \wedge R$$

Gauge-Higgs unification: chiralty and repeted generations

From E_8 adjoint

Assuming E_8 (to be justified later)

Under
$$E_8 \to SU(3) \times SU(2) \times U(1)_Y \times SU(5)_{\perp}$$
,

$$\begin{aligned} \mathbf{248} & \to \text{adjoints} + e^c(\mathbf{1}, \mathbf{1}, \mathbf{5})_1 + l(\mathbf{1}, \mathbf{2}, \mathbf{10})_{-1/2} \\ & + q(\mathbf{3}, \mathbf{2}, \mathbf{5})_{1/6} + X(\mathbf{3}, \mathbf{2}, \mathbf{1})_{-5/6} \\ & + d^c(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{10})_{1/3} + u^c(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{5})_{-2/3} + c.c. \end{aligned}$$

A desirable spectrum!

From $U(1)_Y \times SU(5)_{\perp}$ background instanton $\langle F \wedge F \rangle$

We have chiral solution to Dirac equation.

Monodromy

The fate of internal quantum numbers

248
$$\rightarrow$$
 adjoints $+ e^{c}(\mathbf{1}, \mathbf{1}, \mathbf{5})_{1} + l(\mathbf{1}, \mathbf{2}, \mathbf{10})_{-1/2} + \dots$

How many e^c , l in the low energy limit?

Instanton background reduces the field components under Weyl symmetry "monodromy."

In general $SU(5)_{\perp}$ has [Hayashi, Kawano, Tata, Tsuchya, Watari].

 S_5 monodromy: 5! permuting all the weights of S_{\perp}

Ex. $\mathbf{5}_{\perp} = \{t_1, t_2, t_3, t_4, t_5\}$ are globally 'connected' by S_5

- ▶ Just one kind of e^c , . . .
- ▶ 3 generations from 3 zero modes of Dirac eq.

Monodromy

The fate of internal quantum numbers

248
$$\rightarrow$$
 adjoints $+ e^{c}(\mathbf{1}, \mathbf{1}, \mathbf{5})_{1} + l(\mathbf{1}, \mathbf{2}, \mathbf{10})_{-1/2} + \dots$

How many e^c , l in the low energy limit?

Instanton background reduces the field components under Weyl symmetry "monodromy."

In general $SU(5)_{\perp}$ has [Hayashi, Kawano, Tata, Tsuchya, Watari].

 S_5 monodromy: 5! permuting all the weights of S_{\perp}

Ex. $\mathbf{5}_{\perp} = \{t_1, t_2, t_3, t_4, t_5\}$ are globally 'connected' by S_5

- ▶ Just one kind of e^c , . . .
- ▶ 3 generations from 3 zero modes of Dirac eq.

$$\mathbf{Ex.10}_{\perp} = \left\{ \begin{array}{cccc} t_1 + t_2 & t_1 + t_3 & t_1 + t_4 & t_1 + t_5 \\ & t_2 + t_3 & t_2 + t_4 & t_2 + t_5 \\ & & t_3 + t_4 & t_3 + t_5 \\ & & & t_4 + t_5 \end{array} \right\} \, {}_{5}C_{2} = 10$$

Higgs doublets h_u , h_d are not yet distinguihsed.

\mathbb{Z}_4 Monodromy

To distinguish SU(2) doublets l,h_u,h_d , we need more special monodromy Mod out $SU(5)_{\perp}$ by \mathbb{Z}_4 monodromy. [Marsano, Saulina, Schaffer-Nameki]

\mathbb{Z}_4 Monodromy

To distinguish SU(2) doublets l, h_u, h_d , we need more special monodromy Mod out $SU(5)_{\perp}$ by \mathbb{Z}_4 monodromy. [Marsano, Saulina, Schaffer-Nameki]

1. Singles out t_5 : the famous 'B - L' symmetry $SU(5)_{GUT} \times U(1)_M \subset SO(10)_{GUT}$

\mathbb{Z}_4 Monodromy

To distinguish SU(2) doublets l, h_u, h_d , we need more special monodromy Mod out $SU(5)_{\perp}$ by \mathbb{Z}_4 monodromy. [Marsano, Saulina, Schaffer-Nameki]

- 1. Singles out t_5 : the famous B L symmetry $SU(5)_{GUT} \times U(1)_M \subset SO(10)_{GUT}$
- 2. Now lepton is distinguished from Higgs

$$\begin{cases} t_{1}, t_{2}, t_{3}, t_{4}, t_{5} \} \rightarrow \{t_{1}, t_{2}, t_{3}, t_{4}\}, \{t_{5}\} \\ q_{0}(\mathbf{3}, \mathbf{2}, \mathbf{5}) \rightarrow q(\mathbf{3}, \mathbf{2}, \mathbf{4})_{\frac{1}{6}} + q'(\mathbf{3}, \mathbf{2}, \mathbf{1})_{\frac{1}{6}} \end{cases}$$

$$\begin{cases} t_{1} + t_{2} & t_{1} + t_{3} & t_{1} + t_{4} & t_{1} + t_{5} \\ t_{2} + t_{3} & t_{2} + t_{4} & t_{2} + t_{5} \\ t_{3} + t_{4} & t_{3} + t_{5} \end{cases}$$

$$t_{0}(\mathbf{1}, \mathbf{2}, \mathbf{10})_{-\frac{1}{2}} \rightarrow l(\mathbf{1}, \mathbf{2}, \mathbf{4})_{-\frac{1}{2}, -3} + h_{u}(\mathbf{1}, \mathbf{2}, \mathbf{4})_{-\frac{1}{2}, 2} + h_{d}^{c}(\mathbf{1}, \mathbf{2}, \mathbf{2})_{-\frac{1}{2}, 2},$$

Yukawa coupling

Yukawa coupling originates from gauge invariant interaction

$$y_{abc} = \int \lambda_a \wedge A_b \wedge \lambda_c$$

Emerges at a triple intersection of branes

$$P qh_u u^c : (t_i) + (-t_i - t_j - t_6) + (t_j + t_6) = 0, i \neq j,...$$

$h_d e^c \ q h_u u^c \ q h_d d^c \ l h_u u^c$	MSSM superpotential
$\nu_M \nu_M^c$	
Xh_ud^c	nonvanishing
$q'h_d^cD^c$	but X and q'
$q'h_u^aD'$	are absent

B and/or L violating couplings absent

$$lh_u$$
, lle^c , lqd^c , $u^cd^cd^c$

Superpotential is renormalizable MSSM superpotential without *R*-parity violating terms—would be broken cf.[Ambroso, Ovrut]

$$W = W_{MSSM}(\mu = 0) + m_h h_u h_d + m_D DD'$$

F-theory

Type IIB string theory $10D \stackrel{SL(2,\mathbb{Z})}{=} F$ -theory on a torus 12D

▶ The symmetry of a torus with comp struct τ

F-theory

Type IIB string theory $10D \stackrel{SL(2,\mathbb{Z})}{=}$ F-theory on a torus 12D

▶ The symmetry of a torus with comp struct τ We compactify F-theory on a Calabi–Yau fourfold: 4D $\mathcal{N}=1$ SUSY

▶ 1 of 4 dim_C is torus — nontrivial product on 3 dim_Cbase

elliptic (torus) fibered: shape of the torus varies, as we move around B

Singular torus locus *S* supports 8D worldvol gauge theory.

cf. CY condition:
$$x \sim -4c_1(B)$$
, $y \sim -6c_1(B)$, $y^2 = x^3 + fx + g$

Gauge theory from geometry

$$(C_0 = 0)$$

Gauge coupling $\tau = C_0 + ig^{-1} = CS$ of an extra torus

- lacktriangle Cartan subalgebra $A_{\mu} = \sum G_{\mu np} \wedge \omega_{np}$
- ▶ W^{\pm} components M2 brane in F-theory wrapping on S^2

D-brane F-string str. junction

► Shrinking sphere = singularity: massless string btwn the coincident branes

Gauge theory from geometry

$$(C_0 = 0)$$

Gauge coupling $\tau = C_0 + ig^{-1} = CS$ of an extra torus

- Cartan subalgebra $A_{\mu} = \sum G_{\mu np} \wedge \omega_{np}$
- W^{\pm} components M2 brane in F-theory wrapping on S^2

D-brane F-string str. junction

► Shrinking sphere = singularity: massless string btwn the coincident branes

The connectedness of Lie algebra = geometry

Classified and tabulated: Just refer to tables.

The shape of singularities

Singularities are classified: They are all special cases of the elliptic equation $y^2 + \mathbf{a}_1 xy + \mathbf{a}_3 y = x^3 + \mathbf{a}_2 x^2 + \mathbf{a}_4 x + \mathbf{a}_6$ describing the torus.

type	group	a ₁	a_2	a_3	a_4	a ₆	Δ	f	g
I ₀	smooth	0	0	0	0	0	0	0	0
Ι1	U(1)	0	0	1	1	1	1	0	0
I_{2k-1}^{ns}	unconven.	0	0	k	k	2k - 1	2k - 1	0	0
I_{2k-1}^{ns} I_{2k-1}^{ns}	SU(2k-1)	0	1	k - 1	k	2k - 1	2k + 1	0	0
Ins I2k IS I2k II	Sp(k)	0	0	k	k	2k	2k	0	0
IS.	SU(2k)	0	1	k	k	2k	2k	0	0
ΪΪ	_	1	1	1	1	1	2	1	1
III	SU(2)	1	1	1	1	2	3	1	1
IV^{IIS}	unconven.	1	1	1	2	2	4	1	1
IV^S	SU(3)	1	1	1	2	3	4	1	1
I* ns 0 ss	G_2	1	1	2	2	3	6	2	3
I* ss	SO(7)	1	1	2	2	4	6	2	3
I ₀ s	SO(8)*	1	1	2	2	4	6	2	3
I_{2k-3}^{*ns}	SO(4k + 1)	1	1	k	k + 1	2k	2k + 3	2	3
I* S	SO(4k + 2)	1	1	k	k + 1	2k + 1	2k + 3	2	3
$I_{2k-2}^{* \text{ ns}}$	SO(4k + 3)	1	1	k + 1	k + 1	2k + 1	2k + 4	2	3
I* S	SO(4k + 4)*	1	1	k + 1	k + 1	2k + 1	2k + 4	2	3
IV* ns	F_4	1	2	2	3	4	8	3	4
IV* S	E_6	1	2	2	3	5	8	3	4
III*	E_7	1	2	3	3	5	9	3	5
II*	E_8	1	2	3	4	5	10	3	5
non-min	_	1	2	3	4	6	12	4	6

Modding out by monodromy: we can get all the possible Lie algebra [Tate]

The shape of singularities

Singularities are classified: They are all special cases of the elliptic equation $y^2 + \mathbf{a}_1 xy + \mathbf{a}_3 y = x^3 + \mathbf{a}_2 x^2 + \mathbf{a}_4 x + \mathbf{a}_6$ describing the torus.

type	group	a ₁	a ₂	a ₃	a ₄	a ₆	Δ	f	g
I ₀	smooth	0	0	0	0	0	0	0	0
11	U(1)	0	0	1	1	1	1	0	0
I_{2k-1}^{ns}	unconven.	0	0	k	k	2k - 1	2k - 1	0	0
I_{2k-1}^{s}	SU(2k-1)	0	1	k - 1	k	2k - 1	2k + 1	0	0
Ins 12k Is 12k II	Sp(k)	0	0	k	k	2k	2k	0	0
15 h	SU(2k)	0	1	k	k	2k	2k	0	0
ÍΪ		1	1	1	1	1	2	1	1
III	SU(2)	1	1	1	1	2	3	1	1
IV ^{ns}	unconven.	1	1	1	2	2	4	1	1
IV^S	SU(3)	1	1	1	2	3	4	1	1
I* ns	G_2	1	1	2	2	3	6	2	3
10 1* ss	SO(7)	1	1	2	2	4	6	2	3
I ₀ * s	SO(8)*	1	1	2	2	4	6	2	3
$I_{2k-3}^{* \text{ ns}}$	SO(4k + 1)	1	1	k	k + 1	2k	2k + 3	2	3
I* S	SO(4k + 2)	1	1	k	k + 1	2k + 1	2k + 3	2	3
1* ns 2k-2 1* s 2k-2	SO(4k + 3)	1	1	k + 1	k + 1	2k + 1	2k + 4	2	3
I* s	SO(4k + 4)*	1	1	k + 1	k + 1	2k + 1	2k + 4	2	3
IV* IIS	F_4	1	2	2	3	4	8	3	4
IV* S	E_6	1	2	2	3	5	8	3	4
III*	E_7	1	2	3	3	5	9	3	5
П*	E_8	1	2	3	4	5	10	3	5
non-min	_	1	2	3	4	6	12	4	6

Modding out by monodromy: we can get all the possible Lie algebra [Tate]

We have 8D gauge symmetry of the same name of singularity

Matter and localization

Matter comes from the 'off-diagonal' component of gaugino Ex. From $U(m+n) \rightarrow U(m) \times U(n)$

$$(m+n)^2 \rightarrow (m^2,1) + (1,n^2) + (m,n) + (\overline{m},\overline{n})$$

$$y^2 = x^2 + (z - a)^m (z - b)^n$$

Matter and localization

Matter comes from the 'off-diagonal' component of gaugino Ex. From $U(m+n) \rightarrow U(m) \times U(n)$

$$(m+n)^2 \rightarrow (m^2,1) + (1,n^2) + (m,n) + (\overline{m},\overline{n})$$

$$y^2 = x^2 + (z - a)^m (z - b)^n$$

Focusing on one gauge brane, matters localized around 'matter' curves on S

Ex. From $E_6 \to SO(10) \times U(1)$, $\mathbf{78} \to \mathbf{45} + \mathbf{16} + \overline{\mathbf{16}} + \mathbf{1}$, spinorial **16** obtainable. For this reason, in SU(5), $\epsilon_{\alpha\beta\gamma\delta\varepsilon}\mathbf{10}^{\alpha\beta}\mathbf{10}^{\gamma\delta}\mathbf{5}^{\varepsilon}$ allowed (forbidden in perturbative D-branes)

Spectral cover

The background instanton/Higgs bundle of $U(1)_Y \times SU(5)_{\perp}$ is described by spectral covers 'flavor branes.' Describing a SUSY bundle for elliptic fibered space [Friedman, Morgan,

Witten]

Spectral cover

Witten]

The background instanton/Higgs bundle of $U(1)_Y \times SU(5)_{\perp}$ is described by spectral covers 'flavor branes.' Describing a SUSY bundle for elliptic fibered space [Friedman, Morgan,

 \triangleright A brany description: t_i positions reflecting monodromy

$$0 = \underbrace{\frac{(a_0s + a_1)(b_0s^5 + b_1s^4 + b_2s^3 + b_3s^2 + b_4 \cdot s + b_5)}{U(1)_Y}}_{= a_0b_0(s - t_Y)(s - t_1)(s - t_2)(s - t_3)(s - t_4)(s - t_5)}$$
 mod S₅

- ▶ Reflecting S_5 monodromy b_m/b_0 elementary symmetric polynomials of deg. m of $t_1, ...t_5$.
- ▶ $a_0 = 1$ by anomaly cancellation The only combinations $b_i + b_{i-1}a_1$
- ▶ Other monodromies, e.g \mathbb{Z}_4 by further tuning b_m
- ▶ $U(1)_Y$: the trace part of $SU(5)_{\perp}$

$$b_1 = -a_1b_0, \quad a_1 \sim -c_1(S)$$

The $SU(3) \times SU(2) \times U(1)_Y$ singularity

Symmetry breaking described by the spectral cover,

$$b_i + b_{i-1}a_1$$

contains also the info. about the unbroken part.

The
$$SU(3) \times SU(2) \times U(1)_Y$$
 singularity

Symmetry breaking described by the spectral cover,

$$b_i + b_{i-1}a_1$$

contains also the info. about the unbroken part.

Recall, the singular torus $y^2 + \mathbf{a}_1 xy + \mathbf{a}_3 y = x^3 + \mathbf{a}_2 x^2 + \mathbf{a}_4 x + \mathbf{a}_6$ for the SM is described using the above parameters [KSC, Kobayashi]

$$\begin{aligned} \mathbf{a}_1 &= -(b_5 + b_4 \mathbf{a}_1) + O(z) \\ \mathbf{a}_2 &= (b_4 + b_3 \mathbf{a}_1)z + O(z^2) \\ \mathbf{a}_3 &= -(b_3 + b_2 \mathbf{a}_1)(\mathbf{a}_1 b_5 + z)z + O(z^3) \\ \mathbf{a}_4 &= (b_2 + b_1 \mathbf{a}_1)(\mathbf{a}_1 b_5 + z)z^2 + O(z^4) \\ \mathbf{a}_6 &= b_0 (\mathbf{a}_1 b_5 + z)^2 z^3 + O(z^6) \\ \Delta &= (b_5 + a_1 b_4)^3 P_X^2 P_{a_6}^2 P_{a_5}^2 P_{a_5}^c Z^3 + P_{q_0} P_X Q_4 z^4 + O(z^5). \end{aligned}$$

The
$$SU(3) \times SU(2) \times U(1)_Y$$
 singularity

Symmetry breaking described by the spectral cover,

$$b_i + b_{i-1}a_1$$

contains also the info. about the unbroken part.

Recall, the singular torus $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ for the SM is described using the above parameters [KSC, Kobayashi]

$$\begin{aligned}
\mathbf{a}_1 &= -(b_5 + b_4 \mathbf{a}_1) + O(z) \\
\mathbf{a}_2 &= (b_4 + b_3 \mathbf{a}_1)z + O(z^2) \\
\mathbf{a}_3 &= -(b_3 + b_2 \mathbf{a}_1)(\mathbf{a}_1 b_5 + z)z + O(z^3) \\
\mathbf{a}_4 &= (b_2 + b_1 \mathbf{a}_1)(\mathbf{a}_1 b_5 + z)z^2 + O(z^4) \\
\mathbf{a}_6 &= b_0(\mathbf{a}_1 b_5 + z)^2 z^3 + O(z^6) \\
\Delta &= (b_5 + a_1 b_4)^3 P_X^2 P_{a_2}^2 P_{d_5}^2 P_{d_5}^2 P_{d_5}^2 z^3 + P_{q_0} P_X Q_4 z^4 + O(z^5).
\end{aligned}$$

- ► On $S = \{\Delta \simeq 0\}$ we have 8D worldvolume gauge theory of $SU(3) \times SU(2) \times U(1)_Y$
- From tables, generically SU(3) at z = 0. (some simplification) Very specially tuned so the actual symmetry is larger.
- ► Change of coordinate $z \leftrightarrow z + a_1b_5$, the singularity looks like generically SU(2) tuned upto $O(z^5)$.

The $SU(3) \times SU(2) \times U(1)_Y$ singularity

- $ightharpoonup a_1 = 0 : SU(5)$ enhancement.
- ▶ In the weakly coupling limit $f, g \to \infty$, with f^3/g^2 finite,

$$P_{q_{\circ}} \simeq P_{u_{\circ}^c} \simeq P_{e_{\circ}^c} \simeq b_5, \quad P_{l_{\circ}} \simeq P_{d_{\circ}^c} \simeq R_5,$$

$$\Delta \simeq b_5^4 R_5 (b_5 a_1 + z)^2 z^3,$$

- ▶ Well known reduction of $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)_Y$
 - \triangleright $U(1)_Y$: relative center-of-mass
 - Linearly equivalent $z \sim z a_1b_5 \sim -t$ cf. parallel separation
 - ▶ Parallel but intersecting $\sigma \cap \sigma \neq 0$: (3, 2) localized on the intersection.

Spectrum

4+1+1 factorization $C_4 \cup C_1 \cup C_1'$

The simplest flux on 4 part only $\gamma_4 = (4 - p_4^*(\eta - c_1))(C_4 \cap \sigma),$ $\gamma_1 = 0, \gamma_1' = 0.$

matter	matter curve	living on	М
X	$t_6 \rightarrow 0$	c_1	0
\boldsymbol{q}	$t_i \rightarrow 0$	C_4	1
q'	$t_5 \rightarrow 0$	C_1'	-4
d^{C}	$t_i + t_5 \rightarrow 0$	$C_4 \cap \tau C_1'$	-3
D^{c}	$t_i + t_{i+2} \rightarrow 0$	$C_4 \cap \tau C_4$	2
D'	$t_i + t_{i+1} \rightarrow 0$	$C_4 \cap \tau C_4$	2
u^{c}	$t_i + t_6 \rightarrow 0$	$C_4 \cap \tau C_1$	1
u'	$t_5 + t_6 \rightarrow 0$	$C_1 \cap \tau C_1'$	-4
$h_{\mathcal{U}}$	$t_i + t_{i+1} + t_6 \to 0$	$C_4 \cap \tau C_4$	2
h_d^c	$t_i + t_{i+2} + t_6 \to 0$	$C_4 \cap \tau C_4$	2
l	$t_i + t_5 + t_6 \to 0$	$C_4 \cap \tau C_1$	-3
e^{c}	$t_i - t_6 \rightarrow 0$	$c_4 \cap c_1$	1
e'	$t_5 - t_6 \rightarrow 0$	$C_1 \cap C_1'$	

Spectrum

4+1+1 factorization $C_4 \cup C_1 \cup C_1'$

The simplest flux on 4 part only

$$\gamma_4 = (4 - p_4^*(\eta - c_1))(C_4 \cap \sigma), \gamma_1 = 0, \gamma_1' = 0.$$

For trivial $a_0 = 1$.

▶ Matter curves for $q, u^c, e^c \ (\in \mathbf{10})$ are linearly equivalent (but actual curves are different) $t_i \sim t_i + t_6 \sim t_i - t_6$

matter

matter curve $t_6 \rightarrow 0$ $t_i \rightarrow 0$ $t_5 \rightarrow 0$ $t_i + t_5 \rightarrow 0$

Spectrum obeys a unification relation

16:
$$n_q = n_{d^c} = n_{u^c} = n_l = n_{e^c} = n_{\nu^c} = -\lambda \eta \cdot (\eta - 4c_1)$$

10:
$$n_{h_d} = n_{h_u} = n_D = n_{D'} = -2\lambda \cdot (\eta - 4c_1)$$

Choosing the base manifold S such that $-\lambda \eta \cdot (\eta - 4c_1) = 3$ e.g. [Donagi, Wijnholt],

3 generations of quarks and leptons plus 6 vectorlike Higgs doublets and tiplets

no other exotics. 2-3 splitting problem

living on

 $C_A \cap \tau C_1'$

 $C_4 \cap \tau C_4$

 $c_1 \cap c'$

-4

 $C_4 \cap \tau C_1$

 $t_i + t_{i+2} \rightarrow 0$ $C_4 \cap \tau C_4$ $t_i + t_{i+1} \rightarrow 0$ $C_4 \cap \tau C_4$ $t_i + t_{i+1} + t_6 \rightarrow 0$ $C_4 \cap \tau C_4$

 $\begin{array}{cccc} t_i + t_5 + t_6 \to 0 & C_4 \cap \tau C_1 \\ t_i - t_6 \to 0 & C_4 \cap C_1 \end{array}$

\mathbb{Z}_4 monodromy

Monodromy is encoded in the spectral cover

$$(U + a_1 V)(d_0 U + d_1 V)(e_0 U^4 + e_1 U^3 V + e_2 U^2 V^2 + e_3 U V^3 + e_4 V^4) = 0.$$

\mathbb{Z}_4 monodromy

Monodromy is encoded in the spectral cover

1+1+4 structure

$$(U + a_1 V)(d_0 U + d_1 V)(e_0 U^4 + e_1 U^3 V + e_2 U^2 V^2 + e_3 U V^3 + e_4 V^4) = 0.$$

Z₄ monodromy needs just one tuning [KSC, Kobayashi]

$$e_2 = e_2' + e_2''$$

$$e_2'/e_0 \sim t_1t_2 + t_2t_3 + t_3t_4 + t_4t_1, \quad e_2''/e_0 \sim t_1t_3 + t_2t_4.$$

\mathbb{Z}_4 monodromy

Monodromy is encoded in the spectral cover

1+1+4 structure

$$(U + a_1 V)(d_0 U + d_1 V)(e_0 U^4 + e_1 U^3 V + e_2 U^2 V^2 + e_3 U V^3 + e_4 V^4) = 0.$$

Z₄ monodromy needs just one tuning [KSC, Kobayashi]

$$e_2 = e_2' + e_2''$$

$$e_2'/e_0 \sim t_1t_2 + t_2t_3 + t_3t_4 + t_4t_1, \quad e_2''/e_0 \sim t_1t_3 + t_2t_4.$$

Down type quarks are decomposed into colored Higgses

$$S_4$$
 orbit $\prod_{i< j}^4 (t_i+t_j) \sim e_0^{-3}(-e_0e_3^2+e_1e_2e_3-e_1^2e_4),$

Two \mathbb{Z}_4 orbits give matter curves

$$h_u^c: (t_1+t_3)(t_2+t_4) \sim e_2'/e_0,$$

 $h_d: (t_1+t_2)(t_2+t_3)(t_3+t_4)(t_4+t_1) \sim (e_2''^2+e_1e_3-4e_0e_4)/e_0^2.$

Actual matter homologies

$$X: C_{X} \cap \sigma = -c_{1} \cap \sigma$$

$$q: C_{q} \cap \sigma = \sigma \cap (\eta - 4c_{1} - x)$$

$$q': C_{q'} \cap \sigma = \sigma \cap (-c_{1} + x)$$

$$d^{c}, l: (C_{q} - V) \cap C_{q'} = \sigma \cap (\eta - 4c_{1} + 2x) + (\eta - c_{1} - x) \cap x$$

$$D^{c}, h_{d}^{c}: \frac{1}{2}(C_{q} - 2U) \cap (C_{q} - 4V) = \sigma \cap (\eta - 4c_{1} - x) + \frac{1}{2}(\eta - x) \cap (\eta - 4c_{1} - x)$$

$$D', h_{u}: \frac{1}{2}C_{q} \cap (U + V) = \sigma \cap (\eta - 2c_{1} - x) + \frac{1}{2}(\eta - x) \cap c_{1}$$

$$u^{c}, e^{c}: C_{q} \cap C_{X} = \sigma \cap (\eta - 4c_{1} - x)$$

$$u', e': C_{q'} \cap C_{X} = \sigma \cap (-c_{1} + x)$$

Conclusion

 $SU(3) \times SU(2) \times U(1)_Y$ model

- Grand Unification is a compelling structure.
- ▶ Unique direction $E_3 \times U(1)_Y$ is the commutant to $SU(5)_{\perp} \times U(1)_Y$ in E_8
- ▶ Z₄ monodromy: R-parity distinguishing Higgses from leptons

String theory/F-theory well-realizes unification with more degrees of freedom. Construction of gauge singularity, spectral covers in F-theory

- ▶ Renormalizable MSSM superpotential
- ► Three generations of quarks and leptons, vectorlike Higgs doublets and triplets mu-term and triplet masses, but without mixing of quarks.
- ▶ Partial flux on SU(4) part gives rise to SU(5), SO(10) GUT structure