Incorporating Event Rates Into MSSM Parameter Determinations

Ben O'Leary, in collaboration with Herbi Dreiner, Michael Krämer and Jonas Lindert

RWTH Aachen University and Bonn University

SUSY2010, Bonn, August 23rd, 2010

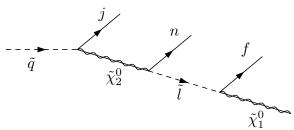
Outline

Introduction Technical Issues And Implementation Some Results With Fittino Summary and Outlook Backup Slides

Outline

Introduction Cascade decays Motivation for utilizing cross-sections

Technical Issues And Implementation Obstacles Our implementation


Some Results With Fittino mSUGRA Results Non-Universal Gaugino Mass Results

Summary and Outlook

Cascade decays

Motivation for utilizing cross-sections

- Most effort for determining SUSY parameters so far has gone into cascade decay kinematics [*e.g.* Gjelsten, Miller and Osland, (2004); Gjelsten, Miller, Raklev, 2005)]
- Expected that colored sparticles produced copiously, then decay in stages emitting observable SM particle each time (assuming *R*-parity conservation)
 - ▶ ğ must decay via ğ, ğ decays often to X₂⁰, typically X₂⁰ decays to l which then must decay to X₁⁰
- ► Unknown center of momentum + $\tilde{\chi}_1^0$ escaping detector = reconstruction difficult

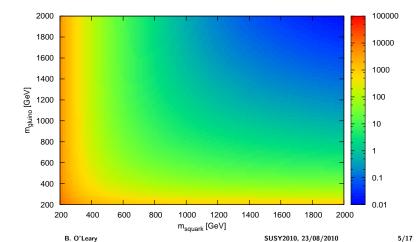
B. O'Leary

SUSY2010, 23/08/2010

Cascade decays Motivation for utilizing cross-sections

Endpoints

 Event-by-event reconstruction impossible, but various kinematic quantities have distributions with well-defined endpoints

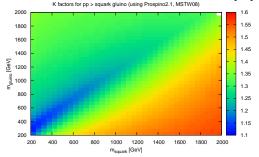

▶ e.g.
$$m_{qll}^2 = (p_q + p_n + p_f)^2$$
 has endpoint

$$\begin{cases}
(m_{\tilde{q}}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\chi}_2^0}^2 & \text{if} & \frac{m_{\tilde{q}}}{m_{\tilde{\chi}_2^0}} > \frac{m_{\tilde{\chi}_2^0}}{m_{\tilde{\chi}_1^0}} \\
(m_{\tilde{q}}^2 m_{\tilde{l}}^2 - m_{\tilde{\chi}_2^0}^2 m_{\tilde{\chi}_1^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}}^2)/m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}}^2 & \text{if} & \frac{m_{\tilde{\chi}_2^0}}{m_{\tilde{l}}} > \frac{m_{\tilde{q}}m_{\tilde{l}}}{m_{\tilde{\chi}_2^0}m_{\tilde{\chi}_1^0}} \\
(m_{\tilde{q}}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\chi}_2^0}^2 & \text{if} & \frac{m_{\tilde{l}}}{m_{\tilde{\chi}_2^0}} > \frac{m_{\tilde{q}}m_{\tilde{l}}}{m_{\tilde{\chi}_1^0}} > \frac{m_{\tilde{q}}}{m_{\tilde{l}}} \\
(m_{\tilde{q}}^2 - m_{\tilde{\chi}_2^0}^2) & \text{otherwise}
\end{cases}$$

Cascade decays Motivation for utilizing cross-sections

Motivation for utilizing cross-sections

- ▶ More observables = better determination of parameters! (in general)
- LHC cross-sections very sensitive to colored sparticle masses


Further motivation for utilizing cross-sections

- Cascade decay endpoint mimic points exist cross-sections can provide discrimination
- Cascade decay endpoints can be underconstraining for certain parameter regions and for certain hierarchies
- Non-supersymmetric models can have very similar spectra but with differing spins:
 - ► invariant mass distributions need to be well-measured to determine spin
 - cross-sections typically are an order of magnitude more for UED models than SUSY models with similar spectra

Cascade decays Motivation for utilizing cross-sections

NLO SUSY cross-sections

NLO needed since LO cross-sections can vary by 100%

► K-factors also different for different sparticle production,

- ▶ e.g. at 7 TeV, $m_{\tilde{g}} \simeq 600$ GeV, $m_{\tilde{q}} \simeq 550$ GeV (close to SPS1a and LM1)
- $K_{\tilde{g}\tilde{g}} = 1.45, K_{\tilde{g}\tilde{q}} = 1.20, K_{\tilde{q}\tilde{q}} = 1.18$
- ► This can lead to quite different amounts of *b*-jets from sbottoms from gluinos, for example

Obstacles Our implementation

Technical Issues

- NLO SUSY-QCD calculations are not fast
- Dependent on unknown masses
 - $\blacktriangleright \ \Rightarrow$ Published studies restricted to single points in many-parameter space
- Not easily invertible
 - $\blacktriangleright \Rightarrow$ Unless Nature really is SPS1a, lots of trial-and-error finding masses if trying to make use of NLO
- Not easy to account for experimental cuts, such as on transverse momentum (though possible with a lot of computing power)
- ► Lester, Parker, White (hep-ph/0508143):
 - Markov chain exploration with full Monte Carlo simulation of SUSY events at each point
 - ► Supercomputer ran ISAJET, HERWIG then ATLFAST for LHC
 - ▶ restricted to 1000 events simulated per point at leading order!
 - proof of principle, not intended to be repeated often

Obstacles Our implementation

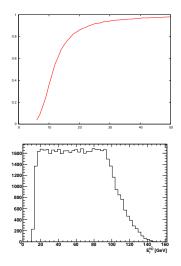
Our implementation - overview

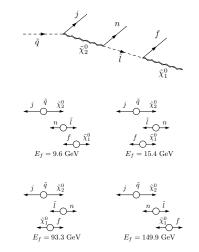
Herbi Dreiner, Michael Krämer, Jonas Lindert, B. O'L.: self-contained code which

- ► takes LHC-scale SUSY spectrum (*e.g.* from SLHA-format file)
- ► looks up table of cross-sections for colored sparticle production
- works out relevant cascade decays and multiplies with relevant branching ratios (BRs taken from SLHA file, such as produced by SPheno)
- applies approximations for cut acceptances depending on sparticle masses
- returns event rates for particular signals

Error estimated to be 15% on cross-section (typical NLO error including PDF uncertainty *etc.*), 5% on cut acceptances (from comparison with full parton-level MC simulation with Herwig++).

Obstacles Our implementation


Some details of our implementation


- currently 2 signals:

 - $e\bar{e} + \mu\bar{\mu} \mu\bar{e} e\bar{\mu}$, with p_T, η cuts
- ▶ looks up table by $m_{\tilde{g}}, m_{\tilde{q}}$, for this point we have:
 - ▶ NLO cross-sections for $\tilde{g}\tilde{g}, \tilde{q}\tilde{g}, \tilde{q}\tilde{q}$ combinations, $\tilde{t}\tilde{t}$ also
 - ► numbers parameterizing cut acceptances for massless particles (e, µ, j assumed so) for given energies in q̃ rest frame
- works out relevant cascade decays and multiplies with relevant branching ratios
- ▶ applies approximations for cut acceptances depending on sparticle masses
 - \blacktriangleright distribution of lepton energies in \tilde{q} rest frame calculated from sparticle masses
 - ► this distribution is convoluted with acceptances for given energies
- returns event rates for particular signals

Obstacles Our implementation

Lepton acceptance example

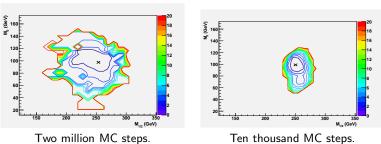
Obstacles Our implementation

Implementation into Fittino

- ▶ Thus far, only used in (private at the moment) version of Fittino
- Used as normal observables in Fittino

Fittino: a program by Philip Bechtle, Klaus Desch and Peter Wienemann (http://www.-flc.desy.de/fittino/)

- Explores SUSY parameter space (simulated annealing or Markov chain)
 - can explore LHC-scale Lagrangian parameter space or GUT-scale (uses SPheno to run from one scale to the other)
- Calculates χ^2 for each point visited based on supplied observables
- ► Eventually distills down to a value for the Lagrangian parameters (low scale or high scale) with errors

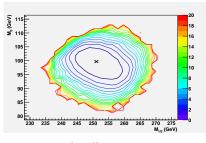

Some results from this implementation have been published in *JHEP* $\mathbf{4}$ (2010).

mSUGRA Results Non-Universal Gaugino Mass Results

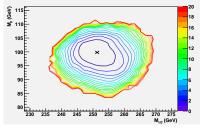
I + rates

Plots for 7 TeV, M_0 against $M_{1/2}$

I, rates


$$("\mathsf{I}" = m_{\ell\ell}^{\max}, m_{q\ell\ell}^{\max}, m_{q\ell}^{\log}, m_{q\ell}^{\operatorname{high}}, "\mathsf{II"} = m_{q\ell\ell}^{\operatorname{thr.}}, m_{T2}^{\tilde{q}}, m_{\tau\tau}^{\max}, m_{tb}^{\mathsf{w}})$$

Data input was SPS1a: $M_0 = 100$ GeV, $M_{1/2} = 250$ GeV, $A_0 = -100$ GeV, $tan(\beta) = 10$.


mSUGRA Results Non-Universal Gaugino Mass Results

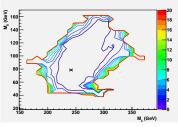
Plots for 14 TeV, M_0 against $M_{1/2}$

I + rates

I + II + rates

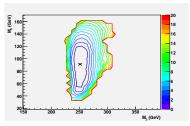
I + II, rates

115


SUSY2010, 23/08/2010

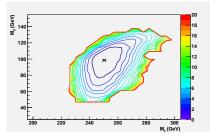
14/17

mSUGRA Results Non-Universal Gaugino Mass Results

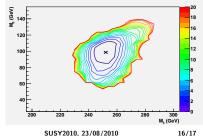

Plots for 7 TeV, M_0 against M_3

I, rates

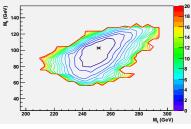
Two million MC steps.



Ten thousand MC steps.


mSUGRA Results Non-Universal Gaugino Mass Results

Plots for 14 TeV, M_0 against M_3



I + rates

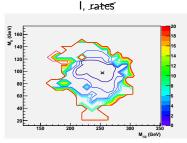
I + II + rates

I + II, rates

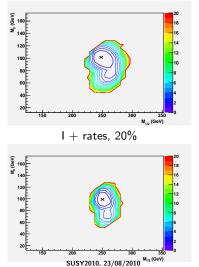
16/17

Summary and Outlook

Summary:

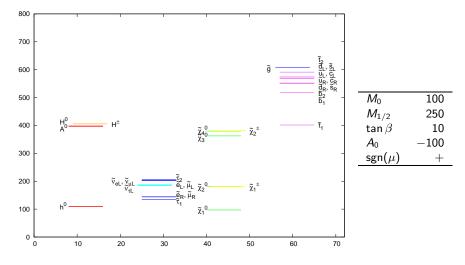

- ► Cross-sections can be calculated within 20% quickly
- \blacktriangleright Rates can make a big difference to reducing errors on $M_{1/2}$ and $\tan\beta$ in Fittino

Outlook:


- ► Further signals to be added (*e.g.* multilepton signals without OSSF-OSDF subtraction)
- Correlations to be investigated
- Information from invariant mass distribution shapes is an intriguing possibility

Fit at 7 TeV with 100% uncertainties SPS1a numbers Invariant mass distribution shapes Motivation for NLO Other implementations

Results for a fit to SPS1a data at 7 TeV, 1 fb⁻¹, 100% uncertainties



I + rates, 100%

Fit at 7 TeV with 100% uncertainties **SPS1a numbers** Invariant mass distribution shapes Motivation for NLO Other implementations

SPS1a spectrum

B. O'Leary

SUSY2010, 23/08/2010

Fit at 7 TeV with 100% uncertainties **SPS1a numbers** Invariant mass distribution shapes Motivation for NLO Other implementations

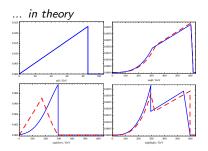
SPS1a inputs for 1 $\rm fb^{-1}$ at 7 and 14 TeV

observable	nominal value	for 7 Te	statistical une ${ m V}/1~{ m fb}^{-1}$ fo	certainty or 14 TeV/1 fb $^{-1}$	
group I					-
$m_{\ell\ell}^{ m max}$	80.4	4	.4	1.5	
$m_{q\ell\ell}^{ m max}$	452.1	36	.0	12.0	
mlow	318.6	19	.7	6.5	
$m_{q\ell}$ $m_{q\ell}^{high}$	396.0	13	.5	4.5	
group II					-
$m^{ m thr.}_{q\ell\ell} \ m^{ m q}_{T2}$	215.6	-	-	22.8	
$m_{T2}^{\dot{q}}$	531.0	-	-	16.9	
$m_{ au au}^{\max}$	83.4	-	-	10.8	
m_{tb}^{w}	359.5	-	-	37.0	
$r_{ ilde{\ell} ilde{ au}\mathrm{BR}}$	0.076	-	-	0.008	_
Event rate [fb]		7 TeV		14 TeV	
	nomi	nal value	uncertainty	nominal value	uncertainty
R _{jj∉⊤}	4.6	5×10^3	9.1×10^2	4.8×10^{4}	9.5×10^{3}
$egin{array}{l} R_{jj otin _{ au}} \ R_{\ell \ell j j otin _{ au}} \end{array}$	1.6	5×10^2	3.2×10^1	1.5×10^3	3.0×10^{2}

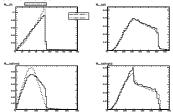
Table of results

SPS1a	<i>M</i> ₀ [GeV] 100	M _{1/2} [GeV] 250	aneta10	A ₀ [GeV] -100
7 TeV and 1 fb ⁻¹ I + rates	99.0 ^{+9.9} 9.1	250.0 ^{+8.7} -6.5	$10.7 \ ^{+4.0}_{-8.8}$	$55.2 \ ^{+1048}_{-254}$
14 TeV and 1 fb^{-1} I + rates I + II, rates I + II + rates	$\begin{array}{r} 99.7 \begin{array}{c} +4.3 \\ -5.7 \\ 99.8 \begin{array}{c} -3.4 \\ -4.4 \\ 99.8 \begin{array}{c} +3.9 \\ -4.2 \end{array}$	$251.1 \begin{array}{c} ^{+7.5}_{-5.8} \\ 249.7 \begin{array}{c} ^{+6.6}_{-5.2} \\ 251.3 \begin{array}{c} ^{+5.0}_{-5.0} \end{array}$	$11.2 \begin{array}{c} +3.5 \\ -5.1 \\ 10.1 \begin{array}{c} +3.8 \\ -3.2 \\ 10.7 \begin{array}{c} +3.1 \\ -3.1 \end{array}$	$\begin{array}{r} -50.9 \begin{array}{c} ^{+1233}_{-350} \\ -94.1 \begin{array}{c} ^{+1610}_{-216} \\ -55.7 \begin{array}{c} ^{+263}_{-233} \end{array}$

Outline Introduction Technical Issues And Implementation Some Results With Fittino Summary and Outlook Backup Slides	Fit at 7 TeV with 100% uncertainties SPS1a numbers Invariant mass distribution shapes Motivation for NLO Other implementations
---	---


Table of results

SPS1a	<i>M</i> ₀ [GeV] 100	<i>M</i> 1 [GeV] 250	M ₂ [GeV] 250	M ₃ [GeV] 250
7 TeV I + rates	$91.1 \ ^{+27.3}_{-36.1}$	$236.5 \ ^{+67.1}_{-57.9}$	$242.6^{+51.6}_{-33.7}$	$251.0^{+9.5}_{-8.5}$
14 TeV I + rates I + II, rates I + II + rates	$\begin{array}{r} 98.5 \begin{array}{c} ^{+16.5}_{-18.4} \\ 102.7 \begin{array}{c} ^{+9.4}_{-21.4} \\ 98.6 \begin{array}{c} ^{+12.6}_{-11.2} \end{array}$	$\begin{array}{c} 245.8 \begin{array}{c} +55.7 \\ -40.7 \\ 258.0 \end{array} \\ \begin{array}{c} +32.5 \\ -51.1 \\ 249.6 \end{array} \\ \begin{array}{c} +31.7 \\ -24.7 \end{array}$	$\begin{array}{r} 244.2 \begin{array}{c} +42.1 \\ -19.4 \\ 255.4 \begin{array}{c} +43.6 \\ -41.7 \\ 248.7 \begin{array}{c} +24.9 \\ -15.5 \end{array}$	$250.3 \begin{array}{c} ^{+11.1}_{-7.0} \\ 251.4 \begin{array}{c} ^{+9.9}_{-12.2} \\ 252.1 \begin{array}{c} ^{+6.0}_{-7.1} \end{array}$


Fit at 7 TeV with 100% uncertainties SPS1a numbers Invariant mass distribution shapes Motivation for NLO Other implementations

Invariant mass distribution shapes

There is also information in the shape of the distribution [e.g. Gjelsten, Miller, Osland (2005, 2006)]...

... but maybe not so much in practice, such as when jet combinatorics are considered.

Fit at 7 TeV with 100% uncertainties SPSIa numbers Invariant mass distribution shapes **Motivation for NLO** Other implementations

Motivation for NLO

- Lot of effort has gone into supersymmetric QCD NLO processes [*e.g.* Beenakker, Höpker, Spira, Zerwas (1996)]
 - necessary to know if signals will be visible
 - may need to know SUSY backgrounds to some processes
 - may learn about sparticle masses
 - limits on sparticle masses if not seen at a collider
- Automated calculation available (e.g. Prospino2)

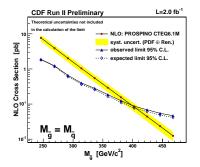


Figure: Sparticle mass exclusion plot, taken from CDF's website

Fit at 7 TeV with 100% uncertainties SPS1a numbers Invariant mass distribution shapes Motivation for NLO Other implementations

Other implementations

- Cross-section information has been used for SUSY parameter space explorations in the literature
- ► Lester, Parker, White (hep-ph/0508143):
 - Markov chain exploration with full Monte Carlo simulation of SUSY events at each point
 - ► Supercomputer ran ISAJET, HERWIG then ATLFAST for LHC
 - restricted to 1000 events simulated per point at leading order!
 - proof of principle, not intended to be repeated often
- Our implementation is *fast* O(100) floating-point operations
- Our aim, in context of Fittino, is to improve errors on fit, be reproducible, be flexible