Introduction to cross section measurements using extensive air showers

Ralf Ulrich
J. Blümer, R. Engel, F. Schüssler, M. Unger

KIT, Forschungszentrum Karlsruhe

DESY, Hamburg 2007
Introduction

Air showers and their observation
- Shower development
- Fluctuations

Analysis methods
- Unaccompanied hadrons
- Frequency attenuation (ground based)
- Distribution of X_{max}
 - RMS
 - Tail
 - Deconvolution

Sources of systematic uncertainties
- Cosmic ray composition
- Methodical
- Air shower fluctuations
- Hadronic interaction models
Air shower development

Main shower ingredients

- Electromagnetic bulk
- Penetrating muons
- Hadronic core
- Invisible (neutrinos)
- Fluorescence/Cherenkov photons
First interaction and fluctuations in air showers

Introduction to cross section measurements using extensive air showers
Auger hybrid event

Introduction to cross section measurements using extensive air showers

Ralf Ulrich (ralf.ulrich@ik.fzk.de)
Air shower profile development (extended Heitler model)

\[
\frac{n(\text{charged})}{n(\text{neutral})} = \frac{2}{1}
\]

\[
X_{\text{max}} \propto \lambda_{\text{inel}} + \lambda_{\text{e.m.}} \cdot \ln\left(\frac{E_0}{E_c} \frac{n_{\text{mult}}}{E_c}\right)
\]

Oppenheimer, Heitler, Matthews (2005)
High energy hadronic interaction models

\[\frac{dP}{dX_{\text{max}}} \sim P(n_{\text{mult}}) \otimes P(\text{inel}) \otimes P(\text{r.e.m.}) \otimes \ldots \]

(distributions for proton interactions at 10 EeV)

Ralf Ulrich (ralf.ulrich@ik.fzk.de)
Contributions to total cross section

- Total cross section
 - Elastic cross section
 - Quasi-elastic cross section
 - Target breakup
 - Beam breakup (only nuclei)
 - Inelastic cross section
 - Production cross section
 - Non-diffractive interactions
 - Diffraction dissociation
 - Target diffraction dissociation
 - Beam diffraction dissociation
 - Double diffraction dissociation

No sensitivity
Some sensitivity
Strong sensitivity
Uncertain composition above $\sim 10^{15.5}\text{eV}$ impacts all air shower observables
Unaccompanied hadrons

experimental results from: Nam et al. (1975), Siohan et al. (1978), Mielke et al. (1994), ...
Unaccompanied hadrons

experimental results from: Nam et al. (1975), Siohan et al. (1978), Mielke et al. (1994), ...
Unaccompanied hadrons

experimental results from: Nam et al. (1975), Siohan et al. (1978), Mielke et al. (1994), . . .
→ Attenuation of shower cascades in the atmosphere

constant $N\mu \Rightarrow$ equal E_0

constant $N_e \Rightarrow$ same distance to X_{max}

experimental results from: Honda et al. (1993), Hara et al. (1999), Aglietta et al. (1999), ...
→ Attenuation of shower cascades in the atmosphere

\[
\text{constant } N_\mu \Rightarrow \text{equal } E_0 \quad \text{constant } N_e \Rightarrow \text{same distance to } X_{\text{max}}
\]

experimental results from: Honda et al. (1993), Hara et al. (1999), Aglietta et al. (1999), ...
→ Attenuation of shower cascades in the atmosphere

constant $N_\mu \Rightarrow$ equal E_0

constant $N_e \Rightarrow$ same distance to X_{max}

experimental results from: Honda et al. (1993), Hara et al. (1999), Aglietta et al. (1999), ...
AGASA like experiment ($X_{\text{obs}} = 920 \text{gcm}^{-2}$, $\frac{\Delta(N_e)}{N_e} = 0.05$, $\frac{\Delta(N_\mu)}{N_\mu} = 0.1$)

(toy detector simulation, $\Phi \sim E^{-2.7}$, $0^\circ < \theta < 60^\circ$, protons only)

→ observed attenuation is only partly due to cross section

compare for example Alvarez-Muniz et al. (2002)
X_{max} distribution: tail and fluctuations

\[\lambda_{\text{int}} = k \cdot \Lambda_{\text{obs}} = \frac{\langle M \rangle}{\sigma_{\text{int}}} \]

all detector effects and fluctuations are contained in k

RMS
- Walker & Watson (Haverah Park, 1982)
- Linsley (1985)

tail
- Baltrusaitis et al. (Fly's eye, 1984)
- Knurenko et al. (Yakutsk, 1999)
\(X_{\text{max}} \)-resolution is 30\(gcm^{-2} \). Energy reconstruction is accurate \((E_0 = 10\text{EeV}) \).
X_{max}-resolution is 30gcm^{-2}. Energy reconstruction is accurate ($E_0 = 10\text{EeV}$).
Deconvolution of X_{max}-distribution

\[X_{\text{max}} = X_1 + \Delta X \]

\[P_{X_{\text{max}}}(X_{\text{max}}) = \int_0^\infty dX_1 \ P_{X_1}(X_1) \cdot P_{\Delta X}(\Delta X) \]

method proposed by Belov et al. (HiRes)
Position of maximum shifts up to $\sim 60\text{gcm}^{-2}$

Exponential slope after maximum changes up to a factor of ~ 1.36

→ Model-dependence
Dependence on HE model parameters

\[\frac{dN}{d\Delta X} \]

"CONEX, QGSJETII, 10 EeV"

- Similar dependence on multiplicity expected

\[P_{\Delta X} \text{ is a function of } \sigma \text{ and other correlated HE model parameters (multiplicity, ...) } \]
Impact of helium primaries

(\(E_0 = 10\) EeV with a detector resolution of 30 gcm\(^{-2}\))

→ significant impact
Impact of gamma primaries

\[\sigma_{\text{rec}} - \sigma_{\text{true}} \]

- qgsjet, protons and gammas
- qgsjetII, protons and gammas
- sibyll, protons and gammas
- epos, protons and gammas

\(E_0 = 10 \text{ EeV with a detector resolution of } 30 \text{ gcm}^{-2} \)

\[\rightarrow \text{significant impact} \]
measuring $\sigma_{p\rightarrow \text{air}}$ means measuring EAS fluctuations

assuming CR primary interaction length the only source of EAS fluctuations is not enough. At least needed:

- Additional HE interaction characteristics (multiplicity, ...)
- The first few interactions at still extreme energy
- Diffraction

Meaningful estimate of uncertainty needs: HE model dependence and CR composition

Future

- Better understanding of fluctuations
- Measurement of composition
- Updated analysis approach (Auger)
- New experiments (fluorescence/Cherenkov, muons, ...)

Ralf Ulrich (ralf.ulrich@ik.fzk.de)
measuring $\sigma_{p\rightarrow air}$ means measuring EAS fluctuations

assuming CR primary interaction length the only source of EAS fluctuations is not enough. At least needed:

- Additional HE interaction characteristics (multiplicity,...)
- The first few interactions at still extreme energy
- Diffraction

Meaningful estimate of uncertainty needs: HE model dependence and CR composition

Future

→ Better understanding of fluctuations
→ Measurement of composition
→ Updated analysis approach (Auger)
→ New experiments (fluorescence/Cherenkov, muons, ...)

Ralf Ulrich (ralf.ulrich@ik.fzk.de)
Introduction to cross section measurements using extensive air showers
measuring σ_{p-air} means measuring EAS fluctuations

assuming CR primary interaction length the only source of EAS fluctuations is not enough. At least needed:

- Additional HE interaction characteristics (multiplicity,...)
- The first few interactions at still extreme energy
- Diffraction

Meaningful estimate of uncertainty needs: HE model dependence and CR composition

Future

→ Better understanding of fluctuations
→ Measurement of composition
→ Updated analysis approach (Auger)
→ New experiments (fluorescence/Cherenkov, muons, ...)

Ralf Ulrich (ralf.ulrich@ik.fzk.de)
Air shower profile fluctuations

- Electrons
- Muons
- Protons, 10^{19} eV

Minimum of shower fluctuations

All simulations performed with CONEX

Ralf Ulrich (ralf.ulrich@ik.fzk.de)

Introduction to cross section measurements using extensive air showers

22 / 22
Auger air shower data

Event: 1364365

Los Morados

Los Leones

Ig(E/eV)~19.3
(\theta,\varphi)=(63.7, 148.3) deg

SD array: Ig(E/eV)~19.1
(\theta,\varphi)=(63.3, 148.9) deg

Ig(E/eV)~19.2
(\theta,\varphi)=(63.7, 148.4) deg
Auger triple event

Ralf Ulrich (ralf.ulrich@ik.fzk.de)

Introduction to cross section measurements using extensive air showers
→ significant difference in multiplicity and diffraction
Changing composition - data
Equal intensity cut

constant intensity \rightarrow same primary energy (isotropic flux)

relates shower size N_{ch} at different zenith angle with primary energy

$8 < \log_{10}(N_{ch}) < 8.25$

$8.25 < \log_{10}(N_{ch}) < 8.5$

$8.5 < \log_{10}(N_{ch}) < 8.75$

$8.75 < \log_{10}(N_{ch}) < 9$
Equal intensity cut

constant intensity \rightarrow same primary energy (isotropic flux)

relates shower size N_{ch} at different zenith angle with primary energy
Equal intensity cut

\[\theta \sec(\theta) \]

- \(8 < \log_{10}(N_{ch}) < 8.25 \)
- \(8.25 < \log_{10}(N_{ch}) < 8.5 \)
- \(8.5 < \log_{10}(N_{ch}) < 8.75 \)
- \(8.75 < \log_{10}(N_{ch}) < 9 \)

constant intensity → same primary energy (isotropic flux)

relates shower size \(N_{ch} \) at different zenith angle with primary energy
Energy reconstruction/selection accurate ($E_0 = 10\text{EeV}$), $\frac{\Delta(N_e)}{N_e} = 0.05$, $X_{\text{obs}} = 920 \text{gcm}^{-2}$
Energy reconstruction/selection accurate \((E_0 = 10\text{EeV}) \), \(\frac{\Delta(N_e)}{N_e} = 0.05 \), \(X_{\text{obs}} = 920\text{gcm}^{-2} \)
Helium

- %
- attenuation
- gcm

- qgsjet
- qgsjetII
- sibyll
- epos

Introduction to cross section measurements using extensive air showers
Introduction to cross section measurements using extensive air showers

Gamma percent gamma [%]

\[\Lambda(\text{attenuation}) \text{ [gcm}^{-2} \text{]} \]

percent gamma [%]

- qgsjet
- qgsjetII
- sibyll
- epos
Independence of ΔX-distribution from X_1

QGSJET01, protons 10^{18}eV (\sim200,000 profiles):

X_1 and ΔX are independent parameters $P_{\Delta X}(\Delta X|X_1) = P_{\Delta X}(\Delta X)$

(confirmed for NEXUS3, SIBYLL2.1, QGSJETII.3, QGSJET01 for protons at 10^{18}eV and 10^{19}eV)
Sensitivity of deconvolution

\[E_0 = 10^{19} \text{eV} \]
Introduction to cross section measurements using extensive air showers
Final - 'progressive' picture

Equivalent c.m. energy $\sqrt{s_{pp}}$ [GeV]

Cross section (proton-air) [mb]

- Mielke et al. 1994
- Baltrusaitis et al. 1984
- Nam et al. 1975
- Siohan et al. 1978

98% confidence limit

⇒ weak constraints on HE interaction models

Ralf Ulrich (ralf.ulrich@ik.fzk.de)