Exclusive Photon and Meson Production at HERMES

Riccardo Fabbri
on behalf of the HERMES Collaboration

EDS 2007 DESY, 22 May 2007

✧ Exclusive Reactions and GPDs
✧ The HERMES Experiment
✧ Exclusive Photon Production (DVCS)
✧ Exclusive Meson Production
✧ Summary and Outlook
GPDs offer most complete description of quark-gluon structure of hadrons
GPDs offer most complete description of quark-gluon structure of hadrons.

Ji sum rule:

\[J_q = \lim_{t \to 0} \int_{-1}^{+1} x dx \left[H_q(x, \xi, t) + E_q(x, \xi, t) \right] \]
Hard Exclusive Processes
interpreted in GPD framework!

large Q^2, small t
The HERMES Experiment at DESY

Gas storage target cell: Polarized/Unpolarized gas. $P_T \approx 88-97\%$

Forward spectrometer: $40 \text{ mrad} < \theta < 220 \text{ mrad}$

Tracking chambers: $\Rightarrow \delta p/p \approx 2\%, \delta \theta \leq 1 \text{ mrad}$

PIDs: e/h separation efficiency $> 98\%$, $\pi^\pm / K^\pm / p$ ID: $2 < p < 15 \text{ GeV}$
Deeply Virtual Compton Scattering

\[ep \rightarrow e'p'\gamma \]

DVCS

- In principle, \(H, E, \tilde{H}, \tilde{E} \) all participate in describing the target
- Final photon observables directly interpreted in terms of four \(GPDs \)
Deeply Virtual Compton Scattering

\[e p \rightarrow e' p' \gamma \]

\[d\sigma \propto |A_{DVCS}|^2 + |A_{BH}|^2 + |A_{DVCS}^* A_{BH} + A_{DVCS} A_{BH}^*|^2 \]

✦ At HERMES kinematics \(BH \) contribution dominates
✦ DVCS-BH interference gives rise to non-zero azimuthal asymmetry
⇒ still possible to access quark information
Deeply Virtual Compton Scattering

\[A(\phi) = \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)} \]

Choosing specific Beam/Target polarization asymmetries:

\[\implies \text{gives access to different combinations of } GPDs \]

HERMES kinematics:

\[\langle x_{Bj} \rangle \approx 0.1, \langle -t \rangle \approx 0.1 \]

\[\implies \text{inside the selected combination, certain } GPDs \text{ suppressed} \]
DVCS: Asymmetries

✦ Beam-charge asymmetry $A_C(\phi)$ (BCA):
\[d\sigma(e^+; \phi) - d\sigma(e^-; \phi) \propto Re[H] \cdot \cos(\phi) \]

✦ Beam-spin asymmetry $A_{LU}(\phi)$ (BSA):
\[d\sigma(\vec{e}; \phi) - d\sigma(\vec{e}; \phi) \propto Im[H] \cdot \sin(\phi) \]

✦ Longitudinal target-spin asymmetry $A_{UL}(\phi)$ (LTSA):
\[d\sigma(\vec{P}; \phi) - d\sigma(\vec{P}; \phi) \propto Im[\tilde{H}] \cdot \sin(\phi) \]

✦ Observables sensitive to convolution of GPDs with hard-scattering kernel (as for others hard exclusive processes):
\[H, E, \tilde{H}, \tilde{E} \rightarrow H, E, \tilde{H}, \tilde{E} \]

(For simplicity: F_1 & F_2 FF from BH amplitude not shown)
Background Subtraction

- Recoiling nucleon not detected
- Exclusive events selected via “missing mass” technique:

\[M_X^2 = (e_\mu + p_\mu - P_{\mu}^{\text{detected}})^2 \]
Background Subtraction

- Recoiling nucleon not detected
- Exclusive events selected via
 “missing mass” technique:

\[M_X^2 = (e_\mu + p_\mu - P_{\mu\text{detected}})^2 \]

- Bg contamination estimated with non-exclusive MC (and data)
DVCS: sensitivity to H via BCA

BCA: $A_C(\phi) \propto Re[H] \cdot \cos(\phi)$

GPD calculations for H
[Vanderhaegen et. al. (1999)]

Different ways to model GPDs in non-forward region
- **D-term:** included OR not-included

t-dependence:
- Regge-inspired OR factorized (e.g. $F(t, x, \xi) = g(t) \cdot h(x, \xi)$)
DVCS: sensitivity to \mathcal{H} via BCA

BCA: $A_C(\phi) \propto \text{Re}[\mathcal{H}] \cdot \cos(\phi)$

- **Unique measurement:**
 - First kinematical dependence of DVCS
- **On publishing**
- **Analyzed data set:** 1998/2000
- **Additional data are being analyzed**

- **GPD calculations for H**
 - [Vanderhaegen et. al. (1999)]

- **Different ways to model GPDs in non-forward region**
 - D-term: included OR not-included

- **t-dependence:**
 - Regge-inspired OR factorized (e.g. $F(t, x, \xi) = g(t) \cdot h(x, \xi)$)
DVCS: sensitivity to \mathcal{H} via BSA

BSA: $A_{LU}(\phi) \propto \text{Im}[\mathcal{H}] \cdot \sin(\phi)$

\[
\begin{align*}
\text{e}^+ p &\rightarrow e^+ \gamma X \ (M_x < 1.7 \text{ GeV}) \\
\text{HERMES PREL. 2000} &\text{ (refined)} \\
\text{- P1 + P2 sin }\phi + \text{ P3 sin }2\phi
\end{align*}
\]

- $P1 = -0.04 \pm 0.02 \text{ (stat)}$
- $P2 = -0.18 \pm 0.03 \text{ (stat)}$
- $P3 = 0.00 \pm 0.03 \text{ (stat)}$

$<t> = 0.18 \text{ GeV}^2$, $<x_B> = 0.12$, $<Q^2> = 2.5 \text{ GeV}^2$

Non-zero $\sin \phi$ moment:

...a \text{Im}[\mathcal{H}] signature
DVCS: sensitivity to \mathcal{H} via BSA

BSA: $A_{LU}(\phi) \propto \text{Im}[\mathcal{H}] \cdot \sin(\phi)$

Versatility of HERMES target:

BSA off nuclei: H, D, He, N, Ne, Kr, Xe

Non-zero $\sin \phi$ moment:

...a $\text{Im}[\mathcal{H}]$ signature

In coherent region, ratio off unity: qualitatively in agreement with

Riccardo Fabbri

DESY, 22 May 2007

Exclusive Processes at HERMES
DVCS: sensitivity to \tilde{H} via LTSA

- **LTSA:** $A_{UL}(\phi) \propto \text{Im}[\tilde{H}] \cdot \sin(\phi)$

- Final statistics of H and D
DVCS: sensitivity to \tilde{H} via LTSA

✧ **LTSA:** $A_{UL}(\phi) \propto Im[\tilde{H}] \cdot \sin(\phi)$

✧ **Final statistics of H and D**

✧ **expected** $\sin \phi$ behaviour

✧ **unexpected** $\sin 2\phi$ moment

$\implies > 3\sigma (1.7\sigma)$ on proton (deuteron)

Twist-3 effect?

HERMES PRELIMINARY

$e^+ p \rightarrow e^+ \gamma X \ (M_x<1.7 \text{ GeV})$

(in HERMES acceptance)

$A = s_0 + s_1 \sin \phi + s_2 \sin 2\phi$

$\chi^2/\text{ndf}: 8.5/7$

$s_0: -0.009 \pm 0.024 \text{ (stat.)}$

$s_1: -0.071 \pm 0.034 \text{ (stat.)}$

$s_2: -0.113 \pm 0.034 \text{ (stat.)}$

$<t>=0.12 \text{ GeV}^2, <x_B>=0.10, <Q^2>=2.5 \text{ GeV}^2$
DVCS: sensitivity to $\mathcal{E}, \mathcal{H}, \tilde{\mathcal{H}}$ via TTSA

✦ Sofar, measured asymmetries insensitive to GPD E, and \tilde{E} suppressed by HERMES kinematics!
DVCS: sensitivity to E, H, \tilde{H} via TTSA

Transverse target-spin asymmetry $A_{UT}(\phi, \phi_S)$:

$$d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi) \propto Im[F_2H - F_1E] \cdot \sin(\phi - \phi_S) \cdot \cos(\phi) +$$

$$\xi = \frac{x_{Bj}}{2 - x_{Bj}}$$

$$Im[F_2\tilde{H} - \xi F_1\tilde{E}] \cdot \cos(\phi - \phi_S) \cdot \sin(\phi)$$

Now we have sensitivity to E
DVCS: sensitivity to \mathcal{E}, \mathcal{H}, $\tilde{\mathcal{H}}$ via TTSA

✦ **TTSA:**

$$A_{UT}(\phi) \propto A_{UT}^{\sin(\phi-\phi_S)\cos(\phi)} \cdot \sin(\phi - \phi_S) \cdot \cos(\phi) + A_{UT}^{\cos(\phi-\phi_S)\sin(\phi)} \cdot \cos(\phi - \phi_S) \cdot \sin(\phi)$$

✦ **Analyzed data sample:** 50% [2002-2004]
DVCS: sensitivity to E, H, \tilde{H} via TTSA

\[A_{UT}(\phi) \propto A_{UT}^{\sin(\phi-\phi_S)\cdot\cos(\phi)} \cdot \sin(\phi - \phi_S) \cdot \cos(\phi) + A_{UT}^{\cos(\phi-\phi_S)\cdot\sin(\phi)} \cdot \cos(\phi - \phi_S) \cdot \sin(\phi) \]

\begin{itemize}
 \item **TTSA:**
 \item **Analyzed data sample:** 50% [2002-2004]
 \item **Predictions:**
 \item **Model GPD E via unkown J**
 \item $J_d = 0$ assumed here
 \item **Sensitivity to J_u:**
 - expected for $A_{UT}^{\sin(\phi-\phi_S)\cdot\cos(\phi)}$
 - NOT-expected for $A_{UT}^{\cos(\phi-\phi_S)\cdot\sin(\phi)}$
 \item Minor sensitivity found to other GPDs parameters:
 - profile / t-dependence
\end{itemize}
TTSA: ...exploiting sensitivity to J_q

\[\chi^2_{exp}(J_u, J_d) = \sum_{i}^{kin bins} \frac{A_{UT,i}^{\sin(\phi-\phi_S) \cdot \cos(\phi)} |_{exp} - A_{UT,i}^{\sin(\phi-\phi_S) \cdot \cos(\phi)} |_{VGG(J_u, J_d)}^2}{\delta A^2_{stat,i} + \delta A^2_{syst,i} + \delta A^2_{accept,i}} \]

- Calculate $A^{\sin(\phi-\phi_S) \cdot \cos(\phi)}_{UT}$ within VGG-based model
- J_u, J_d kept free in fit
- Via χ^2 minimization determine 1σ area for (J_u, J_d)
TTSA: ...exploiting sensitivity to J_q

\[
\chi^2_{\text{exp}}(J_u, J_d) = \sum_{\text{kin bins}} \left[A_{\text{UT},i} \sin(\phi - \phi_S) \cos(\phi) \right]_{\text{exp}} - \left[A_{\text{UT},i} \sin(\phi - \phi_S) \cos(\phi) \right]_{\text{VGG}(J_u, J_d)}^2 \right] \delta A_{\text{stat},i}^2 + \delta A_{\text{syst},i}^2 + \delta A_{\text{accept},i}^2
\]

✧ **Calculate** $A_{\text{UT}} \sin(\phi - \phi_S) \cos(\phi)$
 within VGG-based model

✧ **J_u, J_d kept free in fit**

✧ **Via** χ^2 minimization
 determine σ area for (J_u, J_d)

More details in:
Z. Ye et al.,
hep-ex/0606061

✧ **First constraint on** J_u vs J_d, ALBEIT model-dependent

\[J_u + J_d / 2.9 \; \text{VGG} = 0.42 \pm 0.21 \; \text{(exp_{tot})} \pm 0.06 \; (b_{\text{VGG}}^{\gamma,s} \in [1, \infty])\]

\[\text{Lattice QCDSF } J^\text{val}_{\gamma} (\mu^2 = 4\text{GeV}^2) \; \text{stat. uncertainty only} \; [\text{PRL92}(2004),042002]\]

\[e^+ p \rightarrow e^+ \gamma X \; (M_X < 1.7\text{ GeV}) \]

\[A_{\text{UT}}^{\sin(\phi - \phi_S) \cos(\phi)} = -0.149 \pm 0.058(\text{stat}) \pm 0.033(\text{syst})\]

\[<t> = 0.12\; \text{GeV}^2, \; <x> = 0.095, \; <Q^2> = 2.5\; \text{GeV}^2\]

GPD Model: LO/Regge/D-term=0
Code: VGG [Vanderhaeghen et al., priv. comm.]

Riccardo Fabbri
DESY, 22 May 2007
Exclusive Processes at HERMES
More complex interpretation in terms of \(GPDs \): include meson amplitude

Quantum numbers of final meson state filter different contrib. of \(GPDs \)

Vector mesons (\(\rho^0 \)): \(\mathcal{H}, \mathcal{E} \) (flavor singlet)

\(f \)-meson family (\(f_0, f_2 \)): \(\mathcal{H}, \mathcal{E} \) (flavor non-singlet)

Pseudoscalar mesons (\(\pi^+ \)): \(\tilde{\mathcal{H}}, \tilde{\mathcal{E}} \)

Riccardo Fabbri

DESY, 22 May 2007

Exclusive Processes at HERMES
Sensitivity to \mathcal{H} and \mathcal{E} in flavour singlet state
TTSA: $A_{UT}(\phi - \phi_S) \propto \frac{N_{\uparrow}^{{\text{excl}}}(\phi-\phi_S)-N_{\downarrow}^{{\text{excl}}}(\phi-\phi_S)}{N_{\uparrow}^{{\text{excl}}}(\phi-\phi_S)+N_{\downarrow}^{{\text{excl}}}(\phi-\phi_S)}$

$A_{UT}^{\sin(\phi-\phi_S)} \sim \frac{\mathcal{E}}{\mathcal{H}} \sim \frac{\mathcal{E}_q+\mathcal{E}_g}{\mathcal{H}_q+\mathcal{H}_g}$
Hard Exclusive ρ^o_L Production

TTSA: $A_{UT}(\phi - \phi_S) \propto \frac{N^\uparrow_{excl}(\phi-\phi_S)-N^\downarrow_{excl}(\phi-\phi_S)}{N^\uparrow_{excl}(\phi-\phi_S)+N^\downarrow_{excl}(\phi-\phi_S)}$

$A_{UT}^{\sin(\phi-\phi_S)} \sim \frac{E}{H} \sim \frac{E_q+E_g}{H_q+H_g}$

Analysis strategy:

✧ $P_T \cdot A_{UT}^{beam} = S_T \cdot A_{UT}^{\gamma^*} + S_L \cdot A_{UL}^{\gamma^*}$

$P_T \cdot A_{UT}^{beam} \sim S_T \cdot A_{UT}^{\gamma^*}$ at HERMES!

✧ ρ^o_L / ρ^o_T separation via angular distribution

⇒ from HERMES data

✧ Because sCH is approximately conserved:

ρ^o_L / ρ^o_T can be mapped into γ^*_L / γ^*_T separation

✧ Asymmetry extracted with Unbinned Maximum Likelihood fit
Potential sensitivity of E to $2J^u + x J^d$

all 2002-05 available data used!

Combined statistical analysis in progress, to make statement concerning J

Riccardo Fabbri
DESY, 22 May 2007
Sensitivity to \mathcal{H} and \mathcal{E} in flavour non-singlet state

Complementary to Vector Meson sensitivity
(\mathcal{H} and \mathcal{E} in flavour singlet state)
Hard Exclusive Production of $\pi^+\pi^-$

\[\gamma^*_L p \rightarrow p\pi^+\pi^- \quad \gamma^*_L d \rightarrow d\pi^+\pi^- \]
Hard Exclusive Production of $\pi^+\pi^-$

\[\gamma_L^* p \rightarrow p\pi^+\pi^- \quad \text{and} \quad \gamma_L^* d \rightarrow d\pi^+\pi^- \]

Which channels may contribute?

- **2-gluon exchange** ($C=+1$)
- **ρ family** ($C=-1, I=1$)
 - $l=1,3,\ldots$
 - $\pi^+\pi^-$

Example:

- ρ^0: $I(J^{PC}) = 1(1--)$
Hard Exclusive Production of $\pi^+\pi^-$

$$\gamma_L^* p \rightarrow p\pi^+\pi^- \quad \gamma_L^* d \rightarrow d\pi^+\pi^-$$

Which channels may contribute?

- (a) ρ family
 - C = -1, I = 1
 - $l = 1, 3, \ldots$
 - 2-gluon exchange (C = +1)

- (b) ρ family
 - C = -1, I = 1
 - $l = 1, 3, \ldots$
 - Singlet quark exchange (C = +1)

- (c) f family
 - C = +1, I = 0
 - $l = 0, 2, \ldots$
 - Non-singlet quark exchange (C = -1)

- (d) f family
 - C = +1, I = 0
 - $l = 0, 2, \ldots$
 - Non-singlet quark exchange (C = -1)

Example:
- ρ^0: $I(J^{PC}) = 1(1--)$

Example:
- Non-resonant S-wave & f_0^-:
 - $I(J^{PC}) = 0(0^{++})$
- f_2^-: $I(J^{PC}) = 0(2^{++})$
How to highlight the elusive f-meson family channel?
How to highlight the elusive f-meson family channel?

$$\frac{d\sigma^{\pi^+\pi^-}}{d\cos \theta} \propto \sum_{J,J',\lambda,\lambda'} \rho_{\lambda',\lambda}^{J,J'} Y_J(\theta,\phi) Y_{J'}^*(\theta,\phi)$$

Spin Density Matrix:
How to highlight the elusive f-meson family channel?

\[
\frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta} \propto \sum_{JJ'\lambda\lambda'} \rho_{\lambda\lambda'}^{JJ'} Y_{J\lambda}(\theta, \phi) Y_{J'\lambda'}^*(\theta, \phi)
\]

Legendre Moments:

\[
\langle P_l(cos\theta) \rangle_{\pi^+\pi^-} = \frac{\int_{-1}^{1} d\cos\theta \ P_l(cos\theta) \ \frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \ \frac{d\sigma^{\pi^+\pi^-}}{d\cos\theta}}
\]

Riccardo Fabbri

DESY, 22 May 2007

Exclusive Processes at HERMES
How to highlight the elusive f-meson family channel?

\[
\frac{d\sigma^{\pi^+\pi^-}}{d \cos \theta} \propto \sum_{JJ'\lambda\lambda'} \rho^{JJ'}_{\lambda\lambda'} Y_{J\lambda}(\theta, \phi) Y_{J'\lambda'}^*(\theta, \phi)
\]

Legendre Moments:

\[
\langle P_l(\cos \theta) \rangle^{\pi^+\pi^-} = \frac{\int_{-1}^{1} d\cos \theta P_l(\cos \theta) \frac{d\sigma^{\pi^+\pi^-}}{d \cos \theta}}{\int_{-1}^{1} d\cos \theta \frac{d\sigma^{\pi^+\pi^-}}{d \cos \theta}}
\]

\[
\langle P_1(\cos \theta) \rangle = \frac{1}{\sqrt{15}} \left[4\sqrt{3}\rho_{11}^{21} + 4\rho_{00}^{21} + 2\sqrt{5}\rho_{00}^{10} \right]
\]

- highlighting elusive f-meson family channel through its interference with dominating ρ^0-meson
- Sensitivity to the interference by measuring $\langle P_1(\cos \theta) \rangle$
Increasing interference vs increasing x

between non-resonant S-wave and ρ^0

\Rightarrow increased contribution of non-singlet $q\bar{q}$ exchange

Described by flavor non-singlet combinations of \mathcal{H}_q & \mathcal{E}_q

♦ Potential sensitivity to J_u, J_d
\(x \)-dependence of \(\langle P_1(\cos \theta) \rangle \)

- Predicted at \(m_{\pi\pi} = 0.50 \text{ GeV} \) for \(H_2 \)
- \(H_2 \) at \(\langle m_{\pi\pi} \rangle = 0.48 \text{ GeV} \)
- \(D_2 \) at \(\langle m_{\pi\pi} \rangle = 0.48 \text{ GeV} \)

Increasing interference vs increasing \(x \) between non-resonant \(S \)-wave and \(\rho^0 \)
\(\Rightarrow \) increased contribution of non-singlet \(q\bar{q} \) exchange

- B.Lehmann-Dronke, P.V.Pobylitsa, M.V.Polyakov, A.Schäfer, K.Goeke:

\(\Rightarrow \) gluon GPD neglected

\(\Rightarrow \) Reasonable agreement of theory with data
Conclusions & Outlook

✧ Several hard exclusive production channels measured
⇒ interpreted in the GPD framework
Conclusions & Outlook

✦ Several hard exclusive production channels measured interpreted in the GPD framework

 – exclusive photons (DVCS)

✦ Constraints on GPDs model obtained
✦ First model-dependent constraint on J_u & J_d
Conclusions & Outlook

✦ Several hard exclusive production channels measured
 \[\Rightarrow \text{interpreted in the GPD framework} \]
 – exclusive photons (DVCS)

✦ Constraints on GPDs model obtained

✦ First model-dependent constraint on J_u & J_d

 – exclusive ρ^O_L:

 ✦ $A_{UT} \sin(\phi - \phi_S)$ extracted: \[\Rightarrow \text{sensitive to } J \]
Conclusions & Outlook

✦ Several hard exclusive production channels measured
 \[\rightarrow \text{interpreted in the GPD framework} \]
 – exclusive photons (DVCS)

✦ Constraints on GPDs model obtained

✦ First model-dependent constraint on \(J_u \) & \(J_d \)

 – exclusive \(\rho^0_L \):
 \[A_{UT}^{\sin(\phi-\phi_S)} \text{extracted:} \rightarrow \text{sensitive to } J \]

 – exclusive \(\pi^+\pi^- \):

✦ Legendre moments measured: \(\rightarrow \text{agreement with GPDs predictions} \)

✦ \(\langle P_1 \rangle \text{ increase vs } x: \rightarrow \text{relative increase with } x \text{ of non-singlet } H_q \) & \(E_q \)
Conclusions & Outlook

Near future:

✦ Improved resolution/statistics expected with new RECOIL detector

✦ Expected total $47 \cdot 10^6$ unpol. DIS on H, $\sim 1 \text{fb}^{-1}$ (as in the proposal)
DVCS: sensitivity to \tilde{H} via LTSA

LTSA: $A_{UL}(\phi) \propto \text{Im}[\tilde{H}] \cdot \sin(\phi) = A_{UL}^{\sin}(\phi) \cdot \sin(\phi)$ at Lead.Twist

Both targets consistent within uncertainties

Only proton GPD predictions exist:
- $\sin \phi$ in agreement with VGG model
- VGG failure in reproduce $\sin 2\phi$

But: only Twist-3 WW-term included

Twist-3 qGq-term needed? (π^0 contamination negligible)

Riccardo Fabbri
DESY, 22 May 2007

Exclusive Processes at HERMES
V. Guzey and M. Strikman:
GPD-based
Pseudoscalar Mesons

Sensitivity to $\tilde{\mathcal{H}}$ and $\tilde{\mathcal{E}}$
Hard Exclusive π^+ Cross-section

$e^+ p \rightarrow e^+ \pi^+ n$

Extraction of the exclusive sample

- Detection: e^+, π^+
- Recoil neutron reconstructed via Missing Mass
- Use of π^- to subtract the non-exclusive bg
- π^+ enhancement
Hard Exclusive π^+ Cross-section

$e^+ p \rightarrow e^+ \pi^+ n$

Extraction of the exclusive sample

Exclusive peak clearly centered at the neutron mass

$\pi^+ / \pi^- = 1.77$

Riccardo Fabbri

DESY, 22 May 2007

Exclusive Processes at HERMES
MC Tuning for Exclusive π^+ Cross-section

Cross-section: $\sim (\tilde{H} + \tilde{E})^2$

- X-section extracted after proper tuning of exclusive MC in the HERMES acceptance
- Vanderhaeghen, Guichon & Guidal (1999)

VGG_MC well reproduces data kin.distributions in the HERMES detector

Riccardo Fabbri
DESY, 22 May 2007

Exclusive Processes at HERMES
Hard Exclusive π^+ Cross-section

Cross-section: $\sim (\tilde{H} + \tilde{E})^2$

- X-section extracted after proper tuning of exclusive MC in the HERMES acceptance

- Vanderhaeghen, Guichon & Guidal (1999)

\[\Gamma(x, Q^2) = \frac{N_{\pi^+}^{excl}}{L \Delta x \Delta Q^2 \Gamma(x, Q^2) \kappa(x, Q^2)} \]

GPDMs framework in terms of: \tilde{H} & \tilde{E}
Hard Exclusive π^+ Cross-section

Cross-section: $\sim (\bar{H} + \bar{E})^2$

$\gamma^* p \rightarrow \pi^+ n$

uncorrected for radiative effects

σ_{tot} (nb)

$0.02 < x < 0.18$

$0.18 < x < 0.26$

$0.26 < x < 0.80$

σ_L: VGG: LO

σ_L: VGG: LO + power corrections

Q^2 (GeV2)

\checkmark VGG (1999): Q^2 dependence qualitatively in agreement with the data

\checkmark Leading order calculations underestimate the data

\checkmark Power correction calculations overestimate the data

\checkmark No σ_L/σ_T separation

Riccardo Fabbri

DESY, 22 May 2007

Exclusive Processes at HERMES
Acceptance correction found to be model dependent

Comparison with two different models made and included in the systematics
Exclusive π⁺: Reduced X-section

Reduced X-section σ_{red} defined as

$$\sigma_{\text{tot}} = \frac{1}{16\pi} \frac{x^2}{1-x} \frac{1}{Q^4} \frac{1}{\sqrt{1 + \frac{4x^2m^2_R}{Q^2}}} \cdot \sigma_{\text{red}}$$

Fit of the form: $1/Q^p$:

- $p = 1.9 \pm 0.5$
- $p = 1.7 \pm 0.6$
- $p = 1.5 \pm 1.0$

agreement with theoretical expectation $1/Q^2$ at fixed x and t
Analysis of exclusive π^0 on unpolarized proton target on going

- no pion-pole contribution in \tilde{E}
- predicted sensitivity to \tilde{E}

- Mankiewicz et. al. (1999) -
Hard Exclusive ρ_L^0 Production

Transverse Target Spin Asymmetry: $\sim \vec{E} \cdot \vec{H}$

$$A_{UT}(\phi - \phi_S) \propto \frac{N_{\text{excl}}^{\uparrow}(\phi - \phi_S) - N_{\text{excl}}^{\downarrow}(\phi - \phi_S)}{N_{\text{excl}}^{\uparrow}(\phi - \phi_S) + N_{\text{excl}}^{\downarrow}(\phi - \phi_S)}$$

- Frankfurt, Polybitsa, Polyakov & Strikman (1999) -

\textit{GPDs framework}

✦ Sizable asymmetry predicted!