Generic two-vertex strong field physics processes

Anthony Hartin

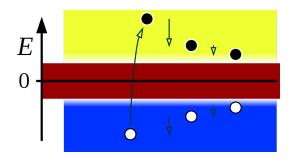
LC Forum, DESY

Feb 9, 2012

Synopsis

- Definition of a strong field
- Why is it important in collider physics?
- What strong field processes have been calculated/simulated?
- Furry picture/Volkov solutions
- Furry picture Feynman diagram components and rules
- IPstrong: a new event generator to produce strong field events

changing the vacuum state

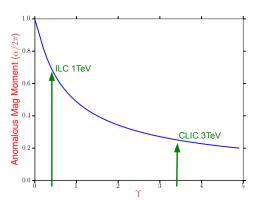


- Vacuum polarization at the Schwinger limit ($E_{\rm cr}=10^{18}~{\rm V/m}$)
- ullet In the incoming collider particles' rest frame, $E
 ightarrow E_{
 m cr}$
- Need to move beyond EPA and perturbation theory

Loop corrections in an external field

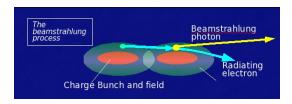
anomalous magnetic moment (one-loop) in a charge bunch field

$$\frac{\Delta\mu}{\mu_0} = \frac{\alpha}{2\pi} \int_0^\infty \frac{2\pi \, dx}{(1+x)^3} \left(\frac{x}{\Upsilon}\right)^{1/3} \operatorname{Gi}\left(\frac{x}{\Upsilon}\right)^{1/3}$$



issues for spin tracking and... ALL loop corrections

Statement of the approach



"Strong field processes are physics processes calculated simultaneously in the normal perturbation theory as well as exactly with respect to a strong electromagnetic field."

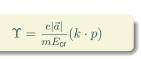
"Such calculations are necessary when the external field seen by a particle approaches or exceeds E_{cr} ."

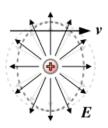
Strong fields at the collider IP

- moving charge has longitudinal length contraction
- relativistic charge bunch produces constant crossed plane wave field

$$A_{\mu} = a_{1\mu}(k \cdot x)$$
$$a_{1\mu} = (0, \vec{a})$$

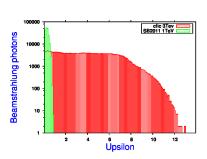
ullet particle p sees a field strength parameter Υ





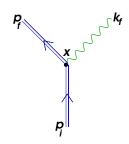
ILC and CLIC Strong field parameters

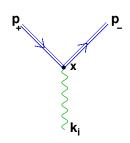
Parameter	ILC 1TeV	CLIC 3 TeV
$\mathcal{L}(\times 10^{34})$	4	3.6
N(incoh)	3.9e5	3.8e5
N(coh)	0	6.8e8
Υ (ave)	0.27	3.34
Υ (max)	0.94	10.9
δE_{bs}	10%	28%
⟨depol⟩ _{LW}	0.62%	3.5%



- CLIC far exceeds Schwinger critical field
- field strength varies from point to point through the beam collision
- depolarization due to spin precession (ILC) and spin flip (CLIC)
- # coherent pairs limited not by the field strength but by the beamstrahlung energy spread

Beamstrahlung, incoherent/coherent pair production

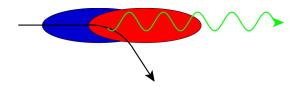




- simulated in IP simulators CAIN, GP
- beamstrahlung & coherent pp calculated via quasi-classical approximation
- incoherent pairs calculated with beamstrahlung photon and EPA
- more exactly these are 1st and 2nd order Furry picture processes

bkgd pairs	current	proposed
coherent	quasi-classical	1 vertex
		Furry picture
incoherent	EPA	2 vertex
		Furry picture

Formation length



" distance travelled by a charged particle while a radiated photon moves one wavelength in front of it"

A bad argument: "If the bunch is sufficiently short we dont need to worry about strong field effects"

- classical argument that only applies to the beamstrahlung
- strong field propagator integrated over all length scales

(W.H.) Furry Picture

 Separate electromagnetic part into external and vacuum parts

 $\bullet \ \ \text{require solutions} \ \psi^V$

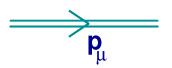
$$(i\partial \!\!\!/ - e \!\!\!/ e^e - m)\psi^V = 0$$

- exact solutions known for
 - plane wave field
 - Coulomb field
 - collinear fields

- At E_{cr} vacuum becomes charged
- tadpole diagrams can contribute

lepton Volkov Solution

 Solution of the 2nd order Dirac equation with external potential



$$[D^2 + m^2 + \frac{e}{2}\sigma^{\mu\nu}F_{\mu\nu}]\psi^{V} = 0, \quad D_{\mu} = \partial_{\mu} + ieA_{\mu}^e$$

 $\bullet \ \, \text{Propose solution} \,\, \psi^{\text{V}} = E_p \, e^{-ip\cdot x} \, u_p \,\,$

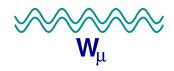
$$2i(kp)E'_p + [e^2A^{e2} - 2e(A^e \cdot p) + ieA^{e'}k]E_p = 0$$

$$\therefore E_p = \exp\left[-\frac{1}{2(k \cdot p)} \left(eA^ek + i2e(A^e \cdot p) - ie^2A^{e2}\right)\right]$$

• Fourier Transform $\psi^{V} = \int d\mathbf{r} \exp(-ip.x - i\mathbf{r}\mathbf{k} \cdot \mathbf{x} - \mathcal{FT}(E_p)) u_p$

W boson Volkov Solution

Equation of motion for the W boson



$$(D^2 + m_W^2)W_\nu + i2eF^\mu_{\ \nu}W_\mu = 0, \quad D^\mu W_\mu = 0$$

 $\bullet \ \, \mbox{with solution} \,\, W_{\mu} = E_p^W \, e^{-ip\cdot x} \, w_p \quad \ \, \mbox{where} \,\,$

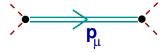
$$E_p^W = \left(g_{\mu\nu} + \frac{e}{k \cdot p} \int F_{\mu\nu} - \frac{e^2}{2(k \cdot p)^2} A^{e2} k_\mu k_\nu\right)$$

$$\cdot \exp\left[-\frac{i}{2(k \cdot p)} \left(2e(A^e \cdot p) - e^2 A^{e2}\right)\right]$$

• similar solutions can be found for other particles that couple to A^e eg. charginos

Strong field propagator

 Look for Green's function solution



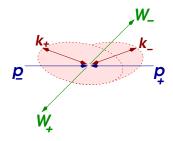
$$(\cancel{D}(x) - m)G^{\mathsf{V}}(x, x') = \delta(x - x')$$

- ullet ψ^V are orthogonal and complete (Ritus, Ann Phys **69** 555, 1970)
- Solution is the fermion propagator flanked by Volkov E_p functions

$$G^{\mathsf{V}}(x,x') = \int d^4p \ E_p(x) \frac{\not p + m}{p^2 - m^2 + i\epsilon} \bar{E}_p(x') e^{ip \cdot (x' - x)}$$
$$\psi^{\mathsf{V}} \equiv E_p(x) e^{-ip \cdot x} u_p$$

photon propagator remains unchanged

Volkov solutions in two external fields

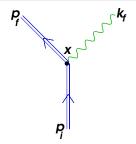


- both incoming bunches contribute external fields
- external field wavevectors are generally anti-collinear
- Need new Volkov-type solution
- $\bullet \ \ \text{Propose solution} \ \psi^{\text{V}} = E_p(\phi_-,\phi_+) \, e^{-ip\cdot x} \, u_p \quad ; \quad \phi_\pm = (k_\pm \cdot p)$

$$2(k - k_{+}) \frac{\partial^{2} E}{\partial \phi_{-} \partial \phi_{+}} + B \frac{\partial E}{\partial \phi_{-}} + C \frac{\partial E}{\partial \phi_{+}} + DE = A^{2}(\phi_{-}, \phi_{+})$$

• solution possible by bunch symmetry, $\vec{a_-} \approx -\vec{a_+}$; $\vec{k_-} \approx -\vec{k_+}$

Modified Feynman Rules



- double fermion lines are Volkov solutions
- conservation of momentum allows 1 vertex diagrams
- $\bullet \ \, \text{Volkov} \, E_p \, \text{functions as adjacent to the} \\ \text{vertex} \,$

$$\gamma_{\mu}^{e} = \int d^4x \bar{E}_{p_f}(x) \gamma_{\mu} E_{p_i}(x) e^{i(p_f - p_i + k_f) \cdot x}$$

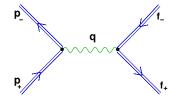
momentum space vertex has contribution rk from external field

$$\gamma_{\mu}^{e} = (2\pi)^{4} \int dr \, \bar{E}_{p_f}(r) \gamma_{\mu} E_{p_i}(r) \delta^{4}(p_f + k_f - p_i - \mathbf{rk})$$

Generic two vertex Furry picture S channel

$$M_{fi} = g_1g_2 \int \! dr_1 dr_2 \ \bar{v}_{p_+} \gamma^{e\mu}_{p_-p_+} u_{p_-} \bar{\epsilon}_{f_+} \gamma^e_{f_-f_+\mu} \epsilon_{f_-} \ \frac{\delta({\scriptscriptstyle F-I-(r_1+r_2)(k_-+k_+)})}{(I+(r_1+r_2)(k_-+k_+))^2}$$

- usual coupling constants and spinors/polarisation
- modified (Furry) vertices γ^e
- r₁, r₂ momentum contribution from (two) external fields



$$\frac{|M_{fi}|^2}{VT} = (g_1g_2)^2 \int d\mathbf{r_1}d\mathbf{r_2} \operatorname{Tr}[..\mathbf{r_1}..\mathbf{r_2}..] \frac{d\vec{f_-} d\vec{f_+}}{4\omega_{f_-}\omega_{f_+}} \frac{\delta(F - I - (\mathbf{r_1} + \mathbf{r_2})(k_- + k_+))}{(I + (\mathbf{r_1} + \mathbf{r_2})(k_- + k_+))^2}$$

Furry picture phase integrals

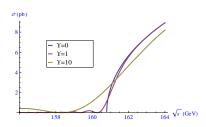
ullet usually, 6 integrations and 4 delta functions leaves $d\Omega$

$$\int dr_1 dr_2 \operatorname{Tr}(r_1, r_2) \frac{d\vec{f_-} d\vec{f_+}}{4\omega_{f_-} \omega_{f_+}} \frac{\delta(F - I - (r_1 + r_2)(k_- + k_+))}{(I + (r_1 + r_2)(k_- + k_+))^2}$$

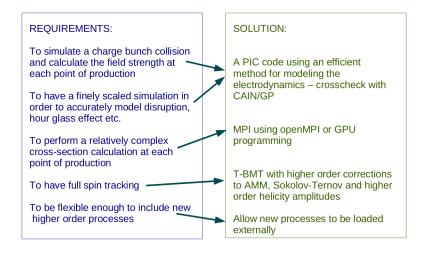
• two extra integrations mean that process threshold is smeared

$$\int \frac{dr d\Omega}{8} \left[1 - \frac{m_f^2}{(E - r((\Upsilon_+ + \Upsilon_-)/E)^{1/3})^2} \right]^{1/2} \int dr_2 \operatorname{Tr}(r - r_2, r_2)$$

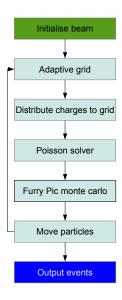
eg. W pair production



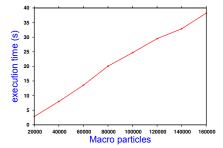
Requirements for a strong field event generator



IPstrong - towards a strong field generator



- Fortran 2003 with openMPI (Fortran 2008 has inbuilt gpu)
- 3D electrostatic poisson solver (MPI)
- Furry picture processes replace all other processes
- output in multiple formats (stdhep, lcio)
- cross-checks with existing programs



Summary

- ILC/CLIC bunch fields are "strong" as regards the Schwinger critical field
- only "nuisance" pair backgrounds, have so far been (approximately) considered
- pair backgrounds can (should) be calculated with 1st and 2nd order Furry picture processes
- Such analysis can (should) be applied to all collider physics processes - particular precision spin processes
- further theoretical development needed such as new Volkov-type solns
- threshold energies are smeared, cross-sections and loop corrections will vary
- A new EM solver/generic event generator, IPstrong is being developed