EMI test board

Tomasz Owczarek
Warsaw University of Technology, ISE

For the DESY LLRF Team
tomasz.owczarek@desy.de

2nd MTCA Workshop
DESY, 11-12.12.2013
What EMI mean?

EMI (ElectroMagnetic Interference)
Electromagnetic emissions from a device or system that interfere with the normal operation of another device or system.

EMC (ElectroMagnetic Compatibility)
The ability of equipment or system to function satisfactorily in its Electromagnetic Environment (EME) without introducing intolerable electromagnetic disturbance to anything in that environment, means:
- Tolerate a specified degree of interference,
- Not generate more than a specified amount of interference

EMC importance
- Lower supply voltages
- Increasing clock frequencies, faster slew rates
- Increasing packaging density
- Demand for smaller, lighter, cheaper, lower-power devices
Interference paths

Two main interference ways:

- Conducted coupling
- Radiated coupling

![Diagram showing interference paths](image)
Is it important?

- $4.4 \text{mV rms @ 400kHz}$
- $-87 \text{dBFS rms @ 400kHz}$
- $FS = 2\text{Vpp} = 0.707 \text{V rms}$
- $\approx 30 \mu \text{Vrms}$
Real interferences

Ground-chassis voltages in working MTCA.4 system are much higher than 4mV

Time trace and spectrum ground-chassis distortion using vendor 1 power supply

Time trace and spectrum ground-chassis distortion using vendor 2 power supply
Reality is more complicated

More AMC & RTM modules

More disturbances sources

More current paths
... actually even more complicated

External signals

other racks

other crates
DAMC-EMI Board Functions

- Power supply voltages measurements (Payload +12V, Management +3.3V)
- +12V power disturbances introduction
- GND to Chassis voltage introduction and measurement
- Low voltage (μV) drop measurements (e.g. on GND plane)
- Vibration measurement
- Measurement of distortions influence on signal quality from DWC
DAMC-EMI board block diagram

Zone 3 connector

Front end cells

12V disturb. in

gnd-chassis disturb. in

12V/3.3V meas. out

gnd-chassis meas. out

differential probe

isolated pwr. supply

vibration sensor

12V/3.3V meas. out

gnd-chassis meas. out

differential probe

external pwr. supply
DAMC-EMI board view

- Front end type selector
- Front end cell out
- Cell selector
- 12V/3.3V out
- 12V disturb. in
- GND-chassis disturb. in
- Vibration sensor
- μV drop meter
- External power
- GND-chassis meas.

Test frontends cells

- Differential Probe
- Isolated power supply and external power entry

GND-chassis meas.

Cell selector

12V disturb. in

Vibration sensor

μV drop meter

External power

GND-chassis meas.
Measurement example 1

no crate disassembly!

slot n

select distortion point as AMC connector

slot n+1

ground-chassis distortion measurement

signal values read by CPU board

DWC

SIS8300
Measurement example 2

Distortion point selection

e.g. AMC or Z3 connector

Ground-chassis distortion measurement

Measurement of distortion influence on front-ends signals

Introduction

Ground-chassis distortion
Measurement example 2

distortion point selection
e.g. AMC or Z3 connector

measurement of voltage drop
between AMC and Z3 connectors

ground-chassis distortion introduction
Measurement example 3

select distortion point as AMC connector

slot n

slot n+1

ground-chassis distortion introduction

measurement of distortion influence on front-ends signals

DWC

EMI

EMI test board

2nd MTCA.4 Workshop, Hamburg 11-12 Dec 2013

Page 14
Summary

The DAMC-EMI board allows to speed up process of

- investigation,
- modeling,
- and fighting against

EMI issues (for conductive coupling) in MTCA.4 based systems.
Thank you for your attention