16–19 Jan 2018
Zurich, Switzerland
Europe/Berlin timezone

Prototype tests for a highly granular scintillator-based hadron calorimeter

18 Jan 2018, 09:40
20m
ETH HG E 1.2 (Zurich, Switzerland)

ETH HG E 1.2

Zurich, Switzerland

Rämistrasse 101, 8092 Zürich, Schweiz

Speaker

Marisol Robles Manzano (JGU Mainz)

Description

Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "engineering prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers (SiPMs) as active material. The front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption (power pulsing). The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. Prototypes in various configurations with up to ~3700 channels, equipped with several types of scintillator tiles and SiPMs, were exposed to electron, muon and hadron beams. The experience of these beam tests as well as the availability of new generation SiPMs with much reduced noise and better device-to-device uniformity resulted in an improved detector design with surface-mount SiPMs allowing for easier mass assembly.

Primary authors

Presentation materials