Conveners
Session Beam Diagnostics: Talks
- Pavel Evtushenko (HZDR / ELBE)
Session Beam Diagnostics: Speed talks
- Miriam Brosi
At the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany, a prototype cryomodule (Advanced Demonstrator) for the superconducting (SC) continuous wave (CW) Helmholtz Linear Accelerator (HELIAC) is under construction.
A transport line, comprising quadrupole lenses, rebuncher cavities, beam steerers and sufficient beam instrumentation has been built to deliver the beam from the...
The SRF linac-based Radiation Source ELBE operates with picosecond and sub-picosecond bunch length. The accelerator system provides beam in CW mode for two (FIR and MIR) FEL oscillators or for two THz sources comprising a superradiant undulator and coherent diffraction radiation (CDR) source. Performances of these sources depend critically on the bunch length. Single shot bunch length...
During accelerator operation, quadrupole gradients can be different from the set values for a variety of reasons.
Precise knowledge of quadrupole gradient errors is desirable in order to improve the optics with respect to the model.
The measured orbit matrix response encodes the optics of the lattice and hence can be used for inverse modeling of quadrupole gradients. The thus derived...
A very common bottleneck to study short electron bunch dynamics in accelerators is a detection scheme that can deal with high repetition rates in the MHz range. The KIT electron storage ring KARA (Karlsruhe Research Accelerator) is the first storage ring with a near-field single-shot electro-optical (EO) bunch profile monitor installed for the measurement of electron bunch dynamics in the...
Fundamentally, synchrotron radiation contains information about the particle distribution in the bunch. From this, among other things, the charge, length, shape and arrival time of the bunch can be determined. However, bunch lengths in the lower picosecond range were too short for conventional, commercial electronics in the past. In this talk, we will provide a glimpse of our recent...
Ultra-short pulses in the picosecond range, combined with the high repetition rate, high power and high brilliance at accelerator facilities opens a wide range possibilities for both fundamental as well as application-oriented research. Radiation generated at Free Electron Lasers (FELs) and Coherent Synchrotron Radiation (CSR) can be used for atomic and sub-atomic level studies. A frequent...
Emerging applications of X-ray free-electron lasers would benefit from femtosecond (fs) pulse durations and fs timing accuracies. The latter requires synchronization that can simultaneously lock all components with a precision better than the accelerator pulse duration. Large-scale facilities are usually synchronized using an RF reference clock and electronic phase-locking techniques. With...
A compact, longitudinal diagnostics for fs-scale electron bunches using a THz electric-field transient in a split-ring resonator (SRR) for streaking will be tested at the Far Infrared Linac and Test Experiment (FLUTE). We present the most important measures that have been carried out in the course of the preparations for the experiment: These include, first, the redesign of the laser optics at...
cSTART (compact Storage ring for Accelerator Research and technology) is a future project at KIT to demonstrate and examine the injection of ultra-short electron bunches and the storage of a laser wakefield accelerated (LWFA) like beam in a very large acceptance compact storage ring (VLA-cSR). Several parameters of the machine and the beam impose some challenges on the beam diagnostics at...
The task of the Particle Detector Combination detectors is to measure the beam intensity of slowly extracted ion beams. The complete range of possible beam intensities at FAIR cannot be covered by single detector type. At GSI this task is accomplished by a combination of three detectors, a plastic SCintillator (SC), an Ionization Chamber (IC) and a Secondary Electron Monitor (SEM).
The SEM...
For the European XFEL it was decided to use scintillator screens, as the standard diagnostics based on optical transition radiation (OTR) would undergo coherent effects at the machine. LYSO:Ce was chosen as scintillator material. However significantly larger emittances have been measured during the comissioning of the XFEL. Moreover there were measured "smoke-ring" distributions [*] at high...