Speaker
Description
Few-cycle shadowgraphy is a valuable diagnostic for laser-plasma accelerators for obtaining insight into the $\mu$m- and fs-scale relativistic plasma dynamics. To enhance the understanding of experimental shadowgrams, we developed a synthetic shadowgram diagnostic within the fully relativistic particle-in-cell code PIConGPU.
In the shadowgraphy diagnostic, the probe laser is propagated through the plasma using PIConGPU, and then extracted and propagated onto a virtual CCD using an in-situ plugin for PIConGPU based on Fourier optics. The in-situ approach circumvents performance limitations of a post-processing workflow, like storing and loading large output files that result from large-scale laser-plasma simulations.
This poster presents the in-situ plugin and first synthetic shadowgrams from laser wakefield accelerator simulations that are generated by the plugin.