18–20 Sept 2024
Berlin Adlershof John v. Neumann Gebaeude
Europe/Berlin timezone

Longitudinal phase space density tomography constrained by the Vlasov-Fokker-Planck equation

Not scheduled
20m
RUD25 3.001 (Berlin Adlershof John v. Neumann Gebaeude)

RUD25 3.001

Berlin Adlershof John v. Neumann Gebaeude

Speaker

Felipe Donoso (IBPT)

Description

Understanding the evolution of complex systems with numerous interacting particles requires advanced analytical tools capable of capturing the intricate dynamics of the phase space. This study introduces a novel approach to longitudinal phase space density tomography in an electron storage ring, leveraging constraints imposed by the Vlasov-Fokker-Planck equation. The Vlasov-Fokker-Planck equation provides a comprehensive description of the evolution of density functions in phase space, accounting for both deterministic and stochastic processes. Measurements of the turn-by-turn bunch profile offer a time-dependent projection of the phase space. Observing the bunch profile evolution of charged particles in regimes characterized by a rich phase space dynamics presents a challenging inverse problem for reconstructing the phase space densities.
In this work, we present a tomographic framework for reconstructing the longitudinal phase space density of an electron bunch at the Karlsruhe Research Accelerator (KARA). This framework utilizes simulated data and applies the Vlasov-Fokker-Planck equation to drive the reconstruction process.

Speed talk: I am unwilling/unable to present a speed talk

Primary author

Co-authors

Presentation materials

There are no materials yet.