Speaker
Description
Many ultra high energy neutrino detection experiments seek radiowave signals from neutrino interactions deep within polar ice, and an understanding of in-ice radiowave propagation is therefore of critical importance. The parabolic equation (PE) method for modeling the propagation of radio waves is a suitable intermediate between ray tracing and finite-difference time domain (FDTD) methods in terms of accuracy and computation time. The RET collaboration has developed the first modification of the PE method for use in modeling in-ice radiowave propagation for ultra high energy cosmic ray and neutrino detection experiments. In this presentation we will detail the motivation for the development of this technique, the process by which it was modified for in-ice use, and showcase the accuracy of its results by comparing to FDTD and ray tracing.
Keywords
parabolic equations; neutrinos; ultra-high energy; simulations; ice; radar;
Subcategory | Theoretical Methods |
---|---|
Collaboration | other (fill field below) |
other Collaboration | Radar Echo Telescope |