The progress in the construction and operation of the Baikal Gigaton Volume Detector inLake Baikal is reported. The detector is designed for search for high energy neutrinos whose sources are not yet reliably identified. It currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km3 for cascades with energy above 100 TeV. We review the...
In this work, we investigate the 2014–2015 neutrino flare associated with the blazar TXS 0506+056 and a recently discovered muon neutrino event IceCube-200107A in spatial coincidence with the blazar 4FGL J0955.1+3551, under the framework of a two-zone radiation model of blazars where an inner/outer blob close to/far from the supermassive black hole is invoked. An interesting feature that the...
The theoretical description of energetic particle transport near interplanetary shocks in the inner and outer Heliosphere and in other astrophysical contexts usually follows a diffusive paradigm. By means of scattering of particles at magnetic irregularities upstream and downstream of the shock, particles can be moved back and forth across the shock discontinuity and gain energy, forming...
In recent years, high-energy gamma-ray emission has been detected from star-forming galaxies in the local universe, including M82, NGC 253, Arp 220 and M33. The bulk of this emission is thought to be of hadronic origin, arising from the interactions of cosmic rays (CRs) with the interstellar medium of their host galaxy. More distant star-forming galaxies would also presumably be bright in...
The under-explored MeV band has an extremely rich scientific potential. Awaiting an all-sky MeV mission, it is now the prime time to take full advantage of the capabilities of the Fermi Large Area Telescope to explore this regime. With more than 12 years of the best available dataset (Pass8), we have developed an all-sky analysis to build a sensitive catalog of sources from 20 to 200 MeV. This...
The landscape of high- and ultra-high-energy astrophysics has changed in the last decade, in large part owing to the inflow of data collected by cosmic-ray, gamma-ray, and neutrino observatories. At the dawn of the multimessenger era, the interpretation of these observations within a consistent framework is important to elucidate the open questions in this field. CRPropa 3.2 is a Monte Carlo...
The nature of the GeV gamma-ray Galactic center excess (GCE) in the data of Fermi-LAT is still under investigation. Different techniques, such as template fitting and photon-count statistical methods, have been applied in the past few years in order to disentangle between a GCE coming from sub-threshold point sources or rather from diffuse emissions, such as the dark matter annihilation in the...
Neutrino-emitting blazars may accelerate cosmic ray (CR) protons at the inner regions of the jet, where most of the magnetic energy is likely to be dissipated. In this picture, the spectrum of neutrinos and gamma-rays that leave the source is shaped by the soft photon fields that the parent hadrons encounter before leaving the source. We build a lepto-hadronic emission model based on particle...
Energetic, non-thermal electrons are commonly observed both upstream and immediately downstream from the Earth’s quasi-perpendicular bow shock (Gosling, 1989). Upstream the energetic electrons are generally field-aligned beams, whereas downstream the flux of them is generally most intense in the direction perpendicular to the magnetic field. However, the acceleration mechanism of these...
Energetic particles generated by interplanetary shocks can drain a non-negligible fraction of the upstream ram pressure. We have selected a sample of shocks observed in-situ at 1 AU by the ACE and Wind spacecraft from the CfA Interplanetary Shock Database, which provides high-resolution data on solar wind plasma, shock parameters, and the local magnetic field. Time-series of the non-Maxwellian...
At very high energies (VHE), the emission of gamma rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE gamma-ray sources has been significantly detected. The larger part of the population can be expected to contribute as a diffuse signal alongside emission...
Deflections of ultra-high-energy cosmic rays (UHECRs) in extragalactic magnetic fields (EGMFs) decrease the expected directional correlations between UHECR arrival directions on the one hand and UHECR source positions and neutrino arrival directions on the other hand. We use the recently observed correlation between UHECRs and local star-forming galaxies by the Pierre Auger Observatory to put...
Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10^18 eV). FR-0s can potentially provide a significant fraction of the UHECR energy density as they are much more numerous in the local universe (up to a factor of ~5...
The global structure of the magnetic field inside the disk of our Galaxy is quite well described by dynamo action and constrained by Faraday rotation measurements. The Halo, on the other hand, is much more of an enigma. Other face-on spiral galaxies show spiral magnetic structures in their disk, like the Milky Way, showing that our magnetic field is a rather typical feature for such class of...
The detection of the flaring gamma-ray blazar TXS 0506+056 in spatial and temporal coincidence with the high-energy neutrino IC-170922A represents a milestone for multi-messenger astronomy. The prompt multi-wavelength coverage from several ground- and space-based facilities of this special event was enabled thanks to the key role of the Fermi-Large Area Telescope (LAT), continuously...
The Southern Wide-field Gamma-ray Observatory is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars;...
Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGN) that are distinct from relativistic jets, likely launched from accretion disks. Such winds can harbor collisionless shocks at different locations that may induce acceleration of protons and electrons and consequent nonthermal emission. We focus on the inner regions of the...
IceCube has observed an excess of neutrino events over expectations from the isotropic background from the direction of NGC 1068. The excess is inconsistent with background expectations at the level of 2.9σ after accounting for statitsical trials. Even though the excess is not statistical significant yet, it is interesting to entertain the possibility that it corresponds to a real signal....
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the IceCube data on atmospheric neutrino fluxes under the assumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with...
Growing multispacecraft networks are broadening the opportunity of measuring energy spectra of energetic particles at interplanetary shocks over three decades or more in energy at the same distance (different from 1 AU) from the Sun. Energetic particles spectra at interplanetary shocks often exhibit a non-power law shape, even within two energy decades. We have introduced a 1D transport...
We recently proposed that cosmic rays are first accelerated at the redshift of z~ 20 by supernova remnants of first stars without the large scale magnetic field. In this talk, we are going to talk about the large scale magnetic field generation by the first cosmic rays. We show that even though the current and charge neutralities are initially satisfied, the current neutrality is eventually...
The CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey) project has observed a sample of 35 edge-on spiral galaxies with the JVLA in C- and L-band. The observations in all Stokes parameters provide polarization information and for 16 galaxies with extended emission it is possible to describe the large scale magnetic field structure in their halos. We exemplify a few of these objects...
Whether studying neutrinos for their own sake or as a messenger particle, neutrino cross-sections are critically important for numerous analyses. On the low energy side, measurements from accelerator experiments reach up to a few 100s of GeV. On the high energy side, neutrino-earth absorption measurements extend down to a few TeV. The intermediate energy range has yet to be measured...
The IceCube neutrino observatory detects neutrinos at energies orders of magnitude higher than those accessible to current neutrino accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charge current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. In this analysis we use the Earth as a target to...
In July of 2019, the IceCube experiment detected a high-energy neutrino from the direction of the powerful quasar PKS 1502+106. I discuss the results of multi-wavelength and multi-messenger modeling of this source, using a fully self-consistent one-zone model that includes the contribution of radiation fields external to the jet. Three distinct activity states of the blazar can be identified:...
The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert program. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the...
On November 29, 2020 active region 12790 was located just beyond the east limb of the Sun as viewed by Earth. It erupted at 12:34UT with an M4.4 flare (as measured by GOES) and launched a coronal mass ejection (CME) traveling ~1700 km/s. Not surprisingly, this fast CME drove a shock that accelerated particles up to tens of MeV/nuc. More unusual was that these solar energetic particles...
We present the phenomenological implications of the micro-physics of cosmic-ray (CR) diffusion as resulting from particle scattering onto the three modes in which Magneto-Hydro-Dynamics (MHD) cascades are decomposed. We calculate the diffusion coefficients from first principles based on reasonable choices of the physical quantities characterizing the different environments of our Galaxy,...
Blazars are a subclass of active galaxies with jets closely aligned to the observer's line of sight. In addition, they are the most powerful persistent sources across the electromagnetic spectrum in the universe. The detection of a high-energy neutrino from the flaring blazar TXS 0506+056 and the subsequent discovery of a neutrino excess from the same direction have naturally strengthened the...
High-energy astrophysical neutrinos have been observed by multiple telescopes in the last decade, but their sources still remained unknown. We address the problem of locating astrophysical neutrinos’ sources in a statistical manner. We show that blazars positionally associated with IceCube neutrino detections have stronger parsec-scale radio cores than the rest of the sample. The probability...
Measuring neutrino interactions with matter is arduous but rewarding. To date, experiments have measured the neutrino-nucleon cross section in the MeV-PeV range, using terrestrial and astrophysical neutrinos. We endeavor to push that measurement to the EeV scale, in order to test competing expectations of the deep structure of nucleons and possibly reveal new neutrino interactions. Cosmogenic...
The existence of a flux of prompt atmospheric neutrinos from the decay of heavy hadrons resulting from the interaction of cosmic rays with the atmospheric nuclei is predicted by theory. Very Large Volume Neutrino Telescopes, like Icecube, KM3NeT and Baikal-GVD, should be sensitive to this neutrino component, that represents a background for the neutrinos from far astrophysical sources....
The discovery of neutrino oscillation confirms neutrinos have mass and the Standard Model(SM) of particle physics is not complete. It needs an extension in order to accommodate the masses and mixing of neutrinos, which essentially leads to beyond SM(BSM) physics. The unknown couplings involving neutrinos, so-called the Non-Standard Interactions(NSIs)[1] may appear as a ’new physics’ in...
XMASS is multi-purpose experiment using liquid xenon and is located at the Kamioka Observatory in Japan. The detector consists of a liquid xenon with a single-phase of 832 kg active volume and has a low energy threshold, low backgrounds and large target mass. In XMASS, it is possible to verify the topics of low energy neutrino physics which would give hints on models beyond SM. Now we have...
The present study is an updated search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). In accordance with some grand unification theories, magnetic monopoles could have been created during the phase of symmetry breaking in the early Universe, and accelerated by galactic magnetic fields. As a consequence of...
Strange quark matter (SQM) is a hypothetical type of matter composed of almost equal quantities of up, down and strange quarks. Massive SQM particles are called nuclearites. Nuclearites with masses greater than $10^{13}$ GeV and velocities of about 250 km/s (typical galactic velocities) could reach the Earth and interact with atoms and molecules of sea water within the sensitive volume of the...
The tau lepton’s supersymmetric partner, the stau, appears in some models as the next-to-lightest particle. This makes it also a long-lived particle. In this scenario, its signature is a long, dim and minimally ionizing track when traveling through the IceCube detector. Independent of their primary energy, the stau tracks appear like low-energy muons in the detector. A potential signal of...
The real-time follow-up of high energy events from neutrino observatories is a promising approach to identify their astrophysical origin. So far, it has provided compelling evidence for a neutrino counterpart: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IC170922A detected by IceCube. The detection of very-high-energy (VHE, E > 100 GeV) gamma...
The KM3NeT collaboration is currently building a new generation of large-volume water-Cherenkov neutrino telescopes in the Mediterranean sea. Two detectors, ARCA and ORCA, are under construction. They feature different neutrino energy thresholds: TeV range for ARCA and GeV range for ORCA. The main research goal of ORCA is the measurement of the neutrino mass ordering and atmospheric neutrino...
The Fermi LAT point source catalog contains 10 years of observational data between 50 MeV to 1 TeV. It contains 5064 point sources mostly consisting of BLLs (1131) and FSRQs (694), while pulsars (239) are the most numerous Galactic population. However, a quarter of detected sources remains unclassified and might hide new source classes. The classification is difficult due to bright, diffuse...
Studies of high energy proton interactions have been basic inputs to understand the cosmic-ray spectra observed on the earth. Yet, the experimental knowledge with controlled beams has been limited. In fact, uncertainties of the forward hadron production are very large due to the lack of experimental data. The FASER experiment is proposed to measure particles, such as neutrinos and hypothetical...
We introduce the TELAMON program, which is using the Effelsberg 100-m telescope to monitor the radio spectra of active galactic nuclei (AGN) under scrutiny in astroparticle physics, namely TeV blazars and neutrino-associated AGN. Thanks to its large dish aperture and sensitive instrumentation, the Effelsberg telescope can yield superior radio data over other programs in the low flux-density...
The detection of the high-energy neutrino IC-170822A in spatial (within the error region) and temporal flare activity correlation with the blazar TXS 0506+056 allowed these objects to be considered as progenitor sources of neutrinos. Besides this, no more detection of this kind was reported. Some other neutrinos detected by IceCube show a spatial correlation (within the error region) from...
On 22 September 2017 IceCube reported a high-energy neutrino event which was found to be coincident with a flaring blazar, TXS 0506+056. This first multi-messenger observation hinted at blazars being sources of observed high-energy astrophysical neutrinos and raised a need for extensive correlation studies. Recent work shows that the internal absorption of gamma rays, and their interactions...
The first Fermi Large Area Telescope (LAT) catalog of gamma-ray transient sources (1FLT) comprises sources that were detected on monthly time intervals during the first decade of Fermi-LAT operations. The monthly time scale allows us to identify transient and variable sources that may have not been reported in Fermi-LAT general catalogs.
The analysis was performed for photon energies between...
The next generation of neutrino telescopes, including Baikal-GVD, KM3NeT, P-ONE, TAMBO, and IceCube-Gen2, will be able to determine the flavor of high-energy astrophysical neutrinos with 10% uncertainties. With the aid of future neutrino oscillation experiments --- in particular JUNO, DUNE, and Hyper-Kamiokande --- the regions of flavor composition at Earth that are allowed by neutrino...
High-energy neutrinos are expected to be produced during gamma-ray flares of blazars through the interaction of high-energy cosmic rays in the jet with photons. As a matter of fact, a high-energy neutrino event, IC-170922A, was detected at the time of a gamma-ray flare from blazar TXS 0506+056 at the level of 3 sigma significance. In this work, we present a statistical study of blazar...
In this work we perform a population study of the H.E.S.S. Galactic Plane Survey (HGPS) catalogue. Namely, we analyze the flux, latitude and longitude distributions of gamma-ray sources detected by H.E.S.S. with the goal of inferring the main properties of galactic TeV source population.
We show that the total Milky Way luminosity in the 1-100 TeV energy range is relatively well constrained...
Particle drifts perpendicular to the background magnetic field are proposed by some authors as an explanation for the very efficient perpendicular transport of solar energetic particles (SEPs). This process, however, competes with perpendicular diffusion caused by magnetic turbulence, which will also disrupt the drift patterns and reduce the efficiency of drift effects. The latter phenomenon...
With the improved sensitivity with respect to the previous generation, current space-borne and ground-based gamma-ray telescopes have made the number of gamma-ray sources detected at GeV-TeV energies increase many folds over the last decade. Many of the detected extended gamma-ray sources are not associated with any known sources at other wavelengths. Understanding the nature of these sources...
Among the many activities organized by the Outreach working group of the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Collaboration, we would like to present the ongoing project #meetTheMAGICians. Under this hashtag, used on our social media pages (@MAGICtelescopes), we collect live streaming events on astroparticle physics topics, series of social media posts, videos and other...
The optical sensors of the IceCube Neutrino Observatory are attached on vertical strings of cables. They were frozen into the ice in the deployment holes made by hot water drill. This hole ice, to the best of our knowledge, consists of a bubbly central column, with the remainder of the re-frozen volume being optically clear. The bubbly ice often blocks one or several of the calibration LEDs in...
The combined fit of the measured energy spectrum and shower depth distribution of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical scenarios with homogeneous source distributions. Further measurements show that the cosmic-ray arrival directions agree better with the directions and fluxes of catalogs of starburst galaxies and active galactic nuclei than with...
Gamma-ray observations ranging from hundreds of MeV to tens of TeV are a valuable tool for studying particle acceleration and diffusion within our galaxy. Supernova remnants, pulsar wind nebulae, and star-forming regions are the main particle accelerators in our local Galaxy. Constructing a coherent physical picture of these astrophysical objects requires the ability to distinguish extended...
Active galactic nuclei (AGNs) are amongst the most promising neutrino source candidates, due to their potential to accelerate cosmic rays in their relativistic jets. The IceCube observatory has already detected several events from the direction of known gamma-ray blazar AGNs, like TXS 0506+056 and, more recently, PKS 1502+106. Through numerical modeling, we can show that neutrino emission is...
The Cherenkov Telescope Array (CTA) is the future ground-based gamma-ray observatory and will be composed of two arrays of imaging atmospheric Cherenkov telescopes (IACTs) located in the Northern and Southern hemispheres respectively. The first CTA prototype telescope built on-site, the Large Size Telescope (LST-1), is under commissioning in La Palma and has already taken data on numerous...
We describe an outreach programme being undertaken at the Armagh Observatory and Planetarium (AOP) for the Cherenkov Telescope Array (CTA). Founded in 1790 and with a rich astronomical heritage, AOP today combines the research and education arms of our organisation to bring a research-informed outreach programme to the public, most often through our planetarium-related activities.
We...
Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is not only frequently visited by astrophotographers but is also home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting...
Deep Learning methods are among the state-of-art of several computer vision tasks, intelligent control systems, fast and reliable signal processing and inference in big data regimes. It is also a promising tool for scientific analysis such as gamma/hadron discrimination.
We present an approach based on Deep Learning for the regression of shower parameters, namely its core position and energy...
An upgrade to the IceCube Neutrino Telescope is currently under construction. For the Upgrade, seven new strings will be deployed in the central region of the 86 string IceCube detector to enhance the capability to detect neutrinos in the GeV range. One of the main science objectives of the Upgrade is an improved calibration of the IceCube detector to reduce systematic uncertainties related to...
Machine learning techniques are powerful tools for the classification of unidentified gamma-ray sources. We present a new approach based on dense and recurrent deep neural networks to classify unidentified or unassociated gamma-ray sources in the last release of the Fermi-LAT catalog (4FGL-DR2). Our method uses the actual measurements of the photon energy spectrum and time series as input for...
We constrain properties of ultrahigh energy cosmic ray source environments (and potentially astrophysical neutrino sources), including their photon temperature, gas density, size, magnetic field strength and coherence length, using UHECR and neutrino spectra and composition. Our analysis represents a new type of information on UHECR sources, independent of the mechanism responsible for the...
A major task in ground-based gamma-ray astrophysics analyses is to separate events caused by gamma rays from the overwhelming hadronic cosmic-ray background. In this talk we are interested in improving the gamma ray regime below 1 TeV, where the gamma and cosmic-ray separation becomes more difficult. Traditionally, the separation has been done in particle sampling arrays by selections on...
Recent discoveries of new features in Galactic cosmic-ray fluxes emphasize the importance of understanding the propagation of cosmic rays. HELIX (High Energy Light Isotope eXperiment) is designed to improve the measurements of light cosmic-ray isotopes, including the propagation clock isotope $^{10}\mathrm{Be}$ and stable secondary isotope $^{9}\mathrm{Be}$, which will be essential to study...
Modeling the extragalactic astroparticle skies involves reconstructing the 3D distribution of the most extreme sources in the Universe. Full-sky tomographic surveys at near-infrared wavelengths have already enabled the astroparticle community to bind the density of sources of astrophysical neutrinos and ultra-high cosmic rays (UHECRs), constrain the distribution of binary black-hole mergers...
Ground-based gamma-ray observatories such as the VERITAS array of imaging atmospheric Cherenkov telescopes provide insight into very-high-energy (VHE, E>100 GeV) astrophysical transient events. Examples include the evaporation of primordial black holes and gamma-ray bursts. Identifying such an event with a serendipitous location and time of occurrence is difficult. Thus, employing a robust...
The relative disposition of individual telescopes in the ground is one of the important factors in optimising the performance of a stereoscopic array of imaging atmospheric Cherenkov telescopes (IACTs). Following previous attempts at an automated survey of the broad parameter space involved using evolutionary algorithms, in this paper we will present a novel approach to optimising the array...
When very-high-energy gamma rays interact high in the Earth’s atmosphere, they produce cascades of particles that induce flashes of Cherenkov light. Imaging atmospheric Cherenkov telescopes (IACTs) detect these flashes and convert them into shower images that can be analyzed to extract the properties of the primary gamma ray. The dominant background for IACTs is comprised of images produced by...
IceCube is a cubic-kilometer scale neutrino telescope located at the geographic South Pole. The detector utilizes the extremely transparent Antarctic ice as a medium for detecting Cherenkov radiation from neutrino interactions. While the optical properties of the glacial ice are generally well modeled and understood, the uncertainties which remain are still the dominant source of systematic...
The IceCube Neutrino Observatory, located at the geographic South Pole, is the world's largest neutrino telescope, instrumenting 1 km³ of Antarctic ice with 5160 photosensors to detect Cherenkov light. For the IceCube Upgrade, to be deployed during the 2022-23 polar field season, and the enlarged detector IceCube-Gen2 several new optical sensor designs are under development. One of these...
The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. Our study is focused on real-time detection at very-short timescales (from 1 to 100...
High energy neutrinos (E>10$^{17}$ eV) are detected cost-efficiently via the Askaryan effect in ice, where a particle cascade induced by the neutrino interaction produces coherent radio emission that can be picked up by antennas installed below the surface. A good knowledge of the firn properties is required to reconstruct the neutrino properties. In particular, a continuous monitoring of the...
We present results of the development of a calibration system for a project of a new Baksan Large Neutrino Telescope. The calibration system is based on fast blue and UV InGaN and AlGaN ultra bright and high power light emitting diodes (LEDs), a diffusing ball and fiber optics. Special fast electronic drivers for such LEDs were developed. The drivers are based on fast complementary and...
The TAIGA-experiment aims to implement a hybrid detection technique of Extensive Air Showers (EAS) at TeV to PeV energies, combining the wide angle Cherenkov timing array HiSCORE with Imaging Air Cherenkov Telescopes (IACTs). The detector currently consists of 89 HiSCORE stations and two IACTs, distributed over an area of about 1 km².
Our goal is to introduce a new reconstruction technique,...
The very-high-energy (VHE) emission from Centaurus A (Cen A) observed by the H.E.S.S. telescopes cannot be explained by simple synchrotron-self-Compton (SSC) models. Motivated by the reported UHECR hotspot in the direction of Cen A, we investigate a scenario in which excited isomer photons of heavy nuclei can account for these VHE photons.
Our fully self-consistent model includes a leptonic...
High energy cosmic rays and gamma rays interacting the atmosphere produce extensive air showers (EAS) of secondary particles emitting Cherenkov light. Being detected with a telescope this light forms "images" of the air shower. In the TAIGA project, in addition to images obtained experimentally, model data are widely used. The difficulty is that the computational models of the underlying...
The energy spectrum of cosmic rays extends over many orders of magnitude with a steep suppression of the flux at the highest energies. The energy spectrum of ultra-high energy cosmic rays (UHECR) is measured with great precision by the Pierre Auger Observatory (Auger) and Telescope Array. However, the two measured spectra show different slopes of the decrease at the highest energies. This...
Fanaroff Riley (FR) 0 radio galaxies form a low luminosity extension of the well established ultrahigh energy cosmic ray (UHECR) candidate accelerators FR-1 and FR-2 galaxies. Their much higher number density – up to a factor 5 more numerous compared to FR-1 with $z<= 0.05$ – makes them good candidate sources for an isotropic contribution to the observed UHECR flux. Here, acceleration and...
Muons from extensive air showers appear as rings in images taken with Cherenkov telescopes, such as VERITAS. These muon ring images are used for the calibration of the VERITAS telescopes, however this calibration process can be improved with a more efficient muon-identification algorithm. Convolutional neural networks (CNNs) are used in many state-of-the-art image-recognition systems and are...
Bouke Jung$^1$, Maarten de Jong$^2$, Paolo Fermani$^3$
on behalf of the KM3NeT collaboration
$^1$) University of Amsterdam, Nikhef
bjung@nikhef.nl
$^2$) Leiden University, Nikhef
mjg@nikhef.nl
$^3$) Sapienza Università di Roma
paolo.fermani@roma1.infn.it
Present and foreseen neutrino observatories, such as IceCube, P-ONE, GVD, Antares and KM3NeT have to operate in challenging...
KM3NeT is constructing two large neutrino detectors in the Mediterranean Sea: KM3NeT/ARCA, located near Sicily and aiming at neutrino astronomy, and KM3NeT/ORCA, located near Toulon and designed for neutrino oscillation studies.
The two detectors, together, will have hundreds of Detection Units (DUs) with 18 Digital Optical Modules (DOMs) maintained vertical by buoyancy, forming a large 3D...
Natural water and ice are currently used as optical detection media in large scale neutrino telescopes, such as IceCube, KM3NeT/ANTARES and GVD. When charged particles, such as those produced by high energy neutrino interactions, pass through ice or water at relativistic speeds they induce Cherenkov light emission. This is detected by the optical modules of neutrino telescopes. However, slower...
Imaging atmospheric Cherenkov telescopes, such as the Very Energetic Radiation Imaging Telescope Array System (VERITAS), are uniquely suited to resolve the detailed morphology of extended regions of gamma-ray emission. However, standard VERITAS data analysis techniques have insufficient sensitivity to gamma-ray sources spanning the VERITAS field of view (3.5°), due to difficulties with...
The large-scale deep underwater Cherenkov neutrino telescopes like Baikal-GVD, ANTARES or KM3NeT, require calibration and testing methods of their optical modules. These methods usually include laser-based systems which allow to check the telescope responses to the light and for real-time monitoring of the optical parameters of water such as absorption and scattering lengths, which show...
We present the results of the one year monitoring of absorption and scattering lengths of light with wave length 375÷532nm within the effective volume deep of underwater neutrino telescope Baikal-GVD, which were measured by a device «BAIKAL-5D». The «BAIKAL-5D» was installed during the 2020y winter expedition at a depth 1250 m. The device has a shaded point-like isotropic light source with...
The IceCube Neutrino Observatory at the South Pole has tremendous emotional appeal—the extreme Antarctic environment coupled with the aura of a pioneering experiment that explores the universe in a new way. However, like with most cutting-edge experiments, it is still challenging to translate the exotic, demanding science into accessible language. We present three examples of recent successful...
A new method to reconstruct the slant depth of the maximum of the longitudinal profile (XmaxXmax) of high-energy showers initiated by gamma-rays as well as their energy (E0) are presented. The method were developed for gamma rays with energies ranging from a few hundred GeV to around 10 TeV. An estimator of Xmax is obtained, event-by-event, from its correlation with the distribution of the...
The Pierre Auger Observatory, sited in Malargüe, Argentina, is the largest observatory available for measuring ultra-high-energy cosmic rays (UHECR). The Auger Collaboration has measured and analysed an unprecedented number of UHECRs. Along with making important scientific discoveries, for example, the demonstration that cosmic rays above 8 EeV are of extragalactic origin and the observation...
The IceCube Neutrino Observatory at the geographic South Pole instruments a gigaton of glacial Antarctic ice with over 5000 photosensors. The detector, by now running for over a decade, will be upgraded with seven new densely instrumented strings. The project focuses on the improvement of low-energy and oscillation physics sensitivities as well as re-calibration of the existing detector. Over...
Baikal-GVD is a kilometre scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accurately determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a...
The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory
currently under construction.
It will improve over the current generation of imaging atmospheric Cherenkov telescopes (IACTs)
by at least one order of magnitude in sensitivity and be able to observe the whole
sky from a northern site in La Palma, Spain, and a southern one in Paranal, Chile.
CTA will also be...
Ground-based gamma-ray astronomy requires reconstructing extensive air showers initiated by gamma rays impinging on the atmosphere. Imaging atmospheric Cherenkov telescopes collect the Cherenkov light induced by secondary charged particles in extensive air showers, creating an image of the shower in a camera. This image is parametrized and used to evaluate the type, energy and arrival...
The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric
Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based
gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments
by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV.
Arrays of IACTs probe the...
We present a new background estimation method for a search for largely extended TeV gamma-ray sources with instruments using the imaging atmospheric Cherenkov technique. This novel method does not rely on the assumption of source morphology and uses the cosmic-ray-like events (events that fail gamma-hadron-separation cuts using shower-shape parameters) collected from the given field to...
The ALTO project aims to build a particle detector array for very high energy gamma ray observations optimized for soft spectrum sources. The accurate reconstruction of gamma ray events, in particular their energies, using a surface array is an especially challenging problem at the low energies ALTO aims to optimize for. In this contribution, we leverage Convolutional Neural Networks (CNNs) to...
The IceCube Neutrino Observatory will be upgraded with more than 700 additional optical sensor modules and new calibration devices. Improved calibration will enhance IceCube’s physics capabilities both at low and high neutrino energies. An important ingredient for good angular resolution of the observatory is precise calibration of the positions of optical sensors. Ten acoustic modules, which...
The Fermi Masterclass is an international outreach event designed to give high-school students the unique opportunity to discover the world of High-Energy Astrophysics. Since 2017, various Italian universities and research institutes, guided by the National Institute for Nuclear Physics (INFN), organized a "full immersion" day of dedicated lectures and exercises in which students analysed real...
The CSES (China Seismo-Electromagnetic Satellite) is a multi-instrumental scientific space program whose objectives are to investigate the near-Earth electromagnetic, plasma and particle environment and for studying the seismo associated disturbances in the ionosphere-magnetosphere transition zone, the anthropogenic electromagnetic noise as well as the natural non-seismic electromagnetic...
The Large High Altitude Air Shower Observatory (LHAASO), is a multi-component experiment located at Daocheng (4410 m a.s.l.), Sichuan province, P.R. China. The identification of gamma rays from protons is an important foundation and premise for gamma ray research. In this paper, we use deep learning algorithm to extract the key features of events directly based on a large amount of original...
OCRA – Outreach Cosmic Ray Activities was born in 2018 as a national outreach project of INFN with the aim of collecting, within a national framework, the numerous public engagement activities in the field of cosmic ray physics already present at a local level in the divisions and laboratories. Since spring of 2020 OCRA offers also a series of online laboratories on its website...
Ultra-high-energy cosmic rays (UHECR) are the most energetic particles ever observed. What astrophysical sources are responsible for their immense acceleration remains unknown despite decades of research. In this talk, I will investigate whether low-luminosity gamma-ray bursts (llGRBs), short-lived cosmic explosions currently seen as one of the most promising acceleration candidates, can be...
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe ultrahigh-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical telescopes orbiting the Earth in a loose formation that observe extensive air showers (EAS) via air...
TIGERISS ( Trans-Iron Galactic Element Recorder for the International Space Station) is a natural evolution to space of the balloon-borne TIGER and SuperTIGER instruments discussed elsewhere at this conference. TIGERISS will be proposed to the next NASA Pioneers opportunity, anticipated in September 2021, as an ISS-attached mission to extend measurements of the relative abundances of galactic...
TAIGA experiment uses hybrid detection system for cosmic and gamma rays that currently includes three imaging atmospheric Cherenkov telescopes (IACTs). Previously we used convolutional neural networks to select gamma ray events and estimate the energy of the gamma rays based on an image from a single telescope. Subsequently we adapted these techniques to use data from multiple telescopes,...
The nonthermal source abundances of elements play a crucial role in the understanding of cosmic ray phenomena from a few GeV up to several tens of EeV. In this presentation a first systematic approach is shown that describes the change of the abundances from the thermal to the nonthermal state via diffusive shock acceleration by a temporally evolving shock. Hereby, not only time-dependent...
We analyze the Auger dipole anisotropy measurements below 8 EeV, to expose the existence of an individual source of the Galactic cosmic rays above $10^{17}$ eV. The source is incompatible with being in the direction of the Galactic center by a $\chi^2$/dof > 6. Interpreting the amplitude and direction of the Galactic HE Dipole in terms of a transient, we find:
a) The amplitude of the...
We discuss the production of multiple messengers including UHECR, EM radiation and neutrinos in Gamma-Ray Bursts in models with multiple interaction regions.
We demonstrate that standard high-luminosity bursts can explain the UHECR spectrum as as measured by the Pierre Auger Observatory, and derive the required source injection composition for different engine realisations. We discuss how...
We explain the observed multiwavelength photon spectrum of a number of BL Lac objects detected at very high energy (VHE, $E > 30$ GeV), using a lepto-hadronic emission model. The one-zone leptonic emission is employed to fit the synchrotron peak. Subsequently, the SSC spectrum is calculated, such that it extends up to the highest energy possible for the jet parameters considered. The data...
Background showers triggered by hadrons represent over 99.9% of all particles arriving at ground-based gamma-ray observatories. An important stage in the data analysis of these observatories, therefore, is the removal of hadron-triggered showers from gamma showers. Currently, the High-Altitude Water Cherenkov (HAWC) gamma-ray observatory employs an algorithm that is a single cut in two...
IceCube discovered a diffuse flux of high-energy neutrinos in 2013, and recently identified the flaring gamma-ray blazar TXS 0506+056 as a likely neutrino source. However, a combined analysis of the entire resolved gamma-ray blazar population limited the contribution of such objects to no more than 27% of the total neutrino flux, leaving the vast majority of the neutrino flux unexplained. Here...
Understanding the nature of the transition from Galactic to extragalactic cosmic rays (GCRs and EGCRs) has become a challenge in light of recent spectral and composition data. Galactic contributions appear to be disfavoured at energies beyond $10^{17} \, {\rm eV}$ where the composition becomes lighter, and extragalactic sources appear to inject mixed compositions, complicating the description...
Recently, the observational study of gamma-ray bursts (GRBs) in the very-high-energy (VHE) regime has quickly advanced with three successful detections. Currently, the list of published VHE GRBs contains GRB 180720B, GRB 190114C, and GRB 190829A. The fortunate proximity of the last event observed with H.E.S.S. (GRB 190829A occurred at z~0.08) allowed an unexpectedly long signal detection, up...
For the in-ice component of the next generation neutrino observatory at the South Pole, IceCube-Gen2, a new sensor module is being developed, which is an evolution of the DEgg and mDOM sensors developed for the IceCube Upgrade. The sensor design features up to 18 4-inch PMTs distributed homogeneously in a borosilicate glass pressure vessel. Challenges arise for the mechanical design from the...
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards the observer. They exhibit non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. Despite the plethora of multi-wavelength observations, the origin of the emission in blazar jets remains an open question. In this work, we construct a two-zone...
Blazars can show variability on a wide range of timescales. However, the search for periodicity in the gamma-ray emission of blazars remains an on-going challenge. This contribution will show the results obtained when a systematic pipeline is used to implement ten well-established methods for searching for periodicity. We analyze the most promising candidates selected from our previous work,...
The radio detection technique with advantages like inexpensive detector hardware and full year duty cycle can prove to be a vital player in cosmic-ray detection at the highest energies and can lead us to the discovery of high energy particle accelerators in the universe. However, radio detection has to deal with continuous irreducible background. The Galactic and thermal backgrounds, which...
The combined fit of the energy spectrum and mass composition data above $5\cdot10^{18}\:\mathrm{eV}$ suggested the presence of extragalactic sources ejecting ultra-high-energy cosmic rays with relatively low maximum energies, hard spectral indices and mixed chemical compositions, dominated by the contribution of intermediate mass groups. Here we present an extension of the fit to lower...
The Telescope Array (TA) cosmic rays detector located in the State of Utah in the United States is the largest ultra high energy cosmic rays detector in the northern hemisphere. The Telescope Array Low Energy Extension (TALE) fluorescence detector (FD) was added to TA in order to lower the detector's energy threshold, and has succeeded in measuring the cosmic rays energy spectrum down to PeV...
The Telescope Array Low-energy Extension (TALE) experiment is a hybrid air shower detector for the observation of air showers induced by cosmic rays with energy above 10$^{16}$ eV. The TALE detector consists of a Fluorescence Detector (FD) station with 10 FD telescopes located at the TA Middle Drum FD Station (itself made up of 14 FD telescopes), and a Surface Detector (SD) array made up of 80...
Telescope Array (TA) is the largest ultra-high-energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It is dedicated to detect extensive air showers (EAS) in hybrid mode, both by measuring the shower’s longitudinal profile with fluorescence telescopes and their particle footprint on the ground from the surface detector (SD) array. While fluorescence telescopes are can measure the...
IceCube is a cubic-kilometer Cherenkov detector installed in deep ice at the geographic South Pole. IceCube's surface array, IceTop, measures the electromagnetic signal and mainly low-energy muons from extensive air showers above several 100 TeV primary energy, with shower bundles and high-energy muons detected by the in-ice detectors. In combination, IceCube and IceTop provide unique...
Different experiments use different techniques to detect and reconstruct cosmic-ray events, yielding different energy scales. Having a method to compare the energy scales of different experiments with minimal uncertainty is necessary in order to make meaningful comparisons of their spectra and composition measurements, which are used to create global models of cosmic-ray sources, acceleration...
Benefiting from more than a decade of experience in WIMP searches with dual-phase xenon time projection chambers, the DARWIN (DARk matter WImp search with liquid xenoN) collaboration intends to build a next-generation detector involving 50 tonnes (40 tonnes active) of xenon. The primary goal of the observatory is to explore the entire experimentally accessible parameter space for WIMP masses...
The IceCube Upgrade is the first step towards the next-generation neutrino observatory at the South Pole, IceCube-Gen2, and will be installed in the central region of the existing array. The Upgrade will consist of 693 newly developed, densely spaced optical sensors and 50 standalone calibration devices, which will enhance IceCube's capabilities both at low and high neutrino energies. 402 of...
The IceCube Upgrade is an extension of the IceCube detector at the geographic South Pole. It consists of seven new strings with novel instrumentation. More than 430 multi-PMT optical modules called "mDOMs", housing 24 3-inch PMTs each, will be produced for the Upgrade. This will require testing and pre-calibration on a short timescale of more than 10,000 PMTs prior to assembly and deployment....
Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequencyof an EHBL is above 10^17 Hz, i.e., lies in the range of medium to hard X-rays making them ideal sources to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them powerful...
DIMS (Dark matter and Interstellar Meteoroid Study) is a new experiment aiming
to search for macroscopic dark matters and interstellar meteoroids. Nuclearites are nuggets of stable strange quark matter(SQM), neutral in charge and hypothetical super-heavy macroscopic particles (macros), and may be important components of the dark matter in our Universe. Nuclearites of galactic origins would...
In February 2019, a flaring state of the extreme blazar candidate TXS 1515-273 was registered by the Fermi-LAT, which triggered observations with the MAGIC telescopes and the X-ray satellites Swift, XMM-Newton and NuStar. The observations led to the discovery of the source at VHE gamma-rays and the detection of short time scales of variability (~1 h) in several X-ray bands.
The analysis of...
We propose a photon trap designed for improved photon detection efficiency in a cost-efficient way. Wavelength Shifting plastic sheets (WLS) are deployed at the bottom of a PMT, surrounded by dichroic film by which photons are efficiently trapped and guided to the PMT. We measured wave-length dependent transmittance of a commercially available dichroic film in water, a key variable determining...
We present results of advance studies of large area photomultipliers (PMTs) of different types from several manufacturers for use in a new Baksan Large Neutrino telescope. At first, requirements for photodetectors to be used in the telescope were formulated. Parameters of 8-inch, 10-inch and 20-inch PMTs were thoroughly studied. 8-inch PMTs under studies were ET9350 from ET Enterprises, R5912...
Interferometric measurements of the radio emission of extensive air showers allow reconstructing cosmic-ray properties. A recent simulation study with an idealised detector promised measurements of the depth of the shower maximum $X_\mathrm{max}$ with an accuracy better than 10$\,$g$\,$cm$^{-2}$.
In this contribution, we evaluate the potential of interferometric $X_\mathrm{max}$ measurements...
The first stage of the construction of the deep underwater neutrino telescope Baikal-GVD is planned to be completed in 2024. The second stage of the detector deployment is planned to be carried out using a data acquisition system based on fiber optic technologies, which will allow for an increased data throughput and looser, more flexible trigger conditions, thus maximizing the neutrino...
Powerful jets hosted by accreting super-massive black holes have long been candidates for the acceleration sites for high-energy extra-galactic cosmic rays, supported by the recent association of neutrinos from blazar TX0506+056. In the highly-aligned jets known as blazars, the X-ray to TeV radiation is usually attributed to inverse Compton scattering processes, but has not been clearly...
Cosmic neutrinos are unique probes of the high energy universe. IceCube has discovered a diffuse astrophysical neutrino flux since 2013, but their origin remains elusive. The potential sources could include, for example, active galactic nuclei, gamma-ray bursts and star burst galaxies. To resolve those scenarios, higher statistics and better angular resolution of astrophysical neutrinos are...
The highest-energy blazars exhibit non-thermal radiation extending beyond 1 TeV with high luminosities and strong variabilities, indicating extreme particle acceleration in their relativistic jets. The gamma-ray spectra of blazars contain information about the distribution and cooling processes of high-energy particles in jets, the extragalactic background light between the source and the...
Extreme high-frequency-peaked BL Lac objects (EHBLs) are the most energetic persistent sources in the universe. This contribution reports on long-term observing campaigns of tens of EHBLs that have been organized by the MAGIC collaboration to enlarge their population at VHE and understand the origin of their extreme properies. EHBLs are characterized by a spectral energy distribution (SED)...
The Pierre Auger Observatory investigates the properties of the highest-energy cosmic rays with unprecedented precision. The aim of the AugerPrime upgrade is to improve the sensitivity to the primary particle type. The improved mass sensitivity is the key to exploring the origin of the highest-energy particles in the Universe. The purpose of the Radio Detector (as part of AugerPrime) is to...
Massive black holes at the centers of galaxies can launch powerful wide-angle winds, which if sustained over time, can unbind the gas from the stellar bulges of galaxies. These winds, also known as ultra-fast outflows (UFOs), may be responsible for the observed scaling relation between the masses of the central black holes and the velocity dispersions of stars in galactic bulges. Propagating...
According to radiative models, radio galaxies are predicted to produce gamma rays from the earliest stages of their evolution onwards. The study of the high-energy emission from young radio sources is crucial for providing information on the most energetic processes associated with these sources, the actual region responsible for this emission, as well as the structure of the newly born radio...
Beams of ultra-relativistic electrons in blazar jets develop pair cascades interacting with ambient soft photons. Employing coupled kinetic equations with escape terms, we model the unsaturated pair cascade spectrum. We assume that the gamma rays predominantly scatter off recombination-line photons from clouds photoionised by the irradiation from the accretion disk and the jet. The cascade...
Current knowledge of the relative abundances and the energy spectra of the elemental mass groups of cosmic rays in the 10 TeV - 1 PeV interval are uncertain. This situation prevents carrying out precision tests that may lead to distinguish among the existing hypotheses on the origin and propagation of TeV cosmic rays in the galaxy. In order to learn more about the mass composition of these...
We test the hypothesis of an anisotropy in the mass of cosmic-ray primaries as a function of galactic latitude. The mass estimate is made using the depth of shower maximum, $X_{\text{max}}$, from hybrid events measured at the Pierre Auger Observatory. The 14 years of available data are split into on- and off-plane regions using the galactic latitude of each event to form two distributions in...
More than 40 years ago beginning of works on deep underwater high energy neutrino telescope projects (DUMAND and Baikal) inspired development of new photon detectors: large area photomultipliers (PMTs), multi small PMT optical modules, small PMTs equipped with wavelength shifting plates and rods and even small area solid state photon detectors for such kind application. Now days we witness...
At the Baksan Neutrino Observatory deployed in the Caucasus mountains, it is proposed to create, at a depth corresponding to about 4700 mwe, a large-volume neutrino detector based on a liquid scintillator with a target mass of 10 kt. The main physics goals of the detector are low-energy neutrino physics, astrophysics and geophysics.
The highest possible light yield is crucial for such...
OT081 is a luminous blazar well known for its variability in many energy bands.
The very-high-energy (VHE, E > 100 GeV) gamma-ray emission from the source was discovered by MAGIC and H.E.S.S. during flaring activity in July 2016, after a trigger from the LAT onboard the Fermi satellite.
From the analysis of the multiwavelength (MWL) light curves and of the broadband spectral energy...
Mass composition anisotropy is predicted by a number of theories describing sources of ultra-high-energy cosmic rays.
Event-by-event determination of a type of a primary cosmic-ray particle is impossible due to large shower-to-shower fluctuations, and the mass composition usually is obtained by averaging over some composition-sensitive observable determined independently for each extensive...
The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a novel detector concept that utilizes a radio interferometer atop a mountain to search for the radio emission from extensive air showers created by Earth-skimming tau neutrinos. The prototype, located at the White Mountain Research Station in California, consists of 4 crossed-dipole antennas operating in the 30-80 MHz range and...
M87 is a giant radio galaxy located in the Virgo Cluster, known to be a very high energy (VHE) gamma-ray source. As radio galaxies are considered the misaligned low-redshift counterparts of blazars, they are excellent laboratories for testing AGN emission models. M87 has been detected and monitored by Fermi-LAT and several atmospheric Cherenkov telescopes. Recently, the HAWC Collaboration has...
The flat-spectrum radio quasar QSO B1420+326 underwent an enhanced gamma-ray flux state seen by Fermi-LAT at the turn of 2019/2020. Compared to the low state both the position and luminosity of the two spectral energy distribution peaks changed by at least two orders of magnitude. The high state resulted in the discovery of the very-high-energy (>100 GeV) gamma-ray emission from the source by...
Cosmic ray data collected by the KASCADE air shower experiment are competitive in terms of quality and statistics with those of modern observatories. We present a novel mass composition analysis based on archival data acquired from 1998 to 2013 provided by the KASCADE Cosmic ray Data Center (KCDC). The analysis is based on modern machine learning techniques trained on simulation data provided...
P-ONE (Pacific Ocean Neutrino Explorer) collaboration was born with the aim of building a new large-scale neutrino telescope in the Pacific Ocean, at 2600 m b.s.l. in Cascadia Basin, off Vancouver Island.
The first steps aimed at the feasibility study and the characterization of the optical properties of the site with a first pathfinder project named STRAW (STRing for Absorption length in...
The low frequency segment of SKA in Australia will have an extremely dense antenna array spanning an area of roughly 0.5 km$^2$. It offers unique possibilities for high-resolution observations of air showers. Compared to LOFAR, it will have a much more homogeneous ground coverage, an increased frequency bandwidth (50-350 MHz), and the possibility to continuously observe with nearly 100% duty...
New optical sensors called the "D-Egg" have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high QE photomultipliers, they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module (DOM) design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310...
We present performance studies of a segmented optical module for the IceCube-Gen2 detector. Based on the experience gained in sensor development for the IceCube Upgrade, the new sensor will consist of up to 18 4-inch PMTs housed in a transparent pressure vessel, providing homogeneous 4 pi coverage. The use of custom moulded optical gel 'pads' around the PMTs enhances the photon capture rate...
The preparation of next generation large-scale radio detectors such as GRAND requires to run massive air-shower simulations to evaluate the radio signal at each antenna position. Radio-Morphing was developed for this purpose. It is a semi-analytical tool that enables a fast computation of the radio signal emitted by any air-shower at any location, from the simulation data of one single...
The GRAPES-3 experiment is located at Ooty in India. It consists of a densely packed array of 400 plastic scintillator detectors (1 $m^{2}$ area each) with 8 m inter-detector separation and a large area (560 $m^{2}$) muon telescope. It measures the cosmic rays from a few TeV to over 10 PeV, thereby providing a substantial overlap with direct experiments as well as covering the knee region. The...
We present a reconstruction algorithm for extensive air showers with zenith angles between 65° and 85° measured with radio antennas in the 30-80 MHz band. Our algorithm is based on a signal model derived from CoREAS simulations which explicitly takes into account the asymmetries introduced by the superposition of charge-excess and geomagnetic radiation as well as by early-late effects. We...
Experimental efforts of the last decades have been unsuccessful in detecting WIMPs (Weakly Interacting Massive Particles) in the $10$-to-$10^4$ GeV/$c^2$ range, thus motivating the search for lighter dark matter. The DAMIC (DArk Matter In CCDs) at SNOLAB experiment aims for direct detection of light dark matter particles ($m_\chi < 10$ GeV/$c^2$) by means of CCDs (Charge-Coupled Devices)....
We present an updated analysis of the mass composition of cosmic rays in the $10^{17}$ to $10^{18}$ eV energy range. It is based on measurements with the LOFAR telescope of the depth of shower maximum, $X_{\mathrm{max}}$.
We review the improvements to the simulation-based reconstruction setup, as well as the selection method to obtain a minimally biased $X_\mathrm{max}$-dataset. Systematic...
The GRANDProto300 (GP300) array is a pathfinder of the Giant Radio Array for Neutrino Detection (GRAND) project. The deployment of the array, consisting of 300 antennas, will start in 2021 in a radio-quiet area of ~200km^2 near Lenghu (~3000 m a.s.l.) in China.
Serving as a test bench, the GP300 array is expected to realise techniques of autonomous radio detection such as identification...
Multi-detector observations of individual air showers are critical to make significant progress to precisely determine cosmic-ray quantities such as mass and energy of individual events and thus bring us a step forward in answering the open questions in cosmic-ray physics. An enhancement of IceTop, the surface array of the IceCube Neutrino Observatory, is currently underway and includes adding...
CORSIKA 8 is a new framework for air shower simulations implemented in modern C++17, based on past experience with existing codes like CORSIKA 7. The flexibility of this framework allows for the inclusion of radio-emission calculations as an integral part of the program. Our design makes radio simulations general and gives the user the freedom to choose between different formalisms, such as...
High-resistivity silicon has made possible the fabrication of thick fully-depleted charge-coupled devices (CCDs) that have found a wide range of scientific applications, from particle detection to astronomical imaging. Their low noise and high charge collection efficiency allow us to reach unprecedented sensitivity to physical processes with low-energy transfers. The newly-developed...
Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emissions (TAROGE) is antenna arrays sitting on high coastal mountains of Taiwan, pointing to the Pacific Ocean for the detection of near-horizon extensive air showers (EAS) induced by ultra-high energy cosmic rays and Earth-skimming tau neutrinos. TAROGE would improve the detection capability by collecting both the...
The TAROGE-M observatory is an autonomous antenna array on the top of Mt.~Melbourne ($\sim2700$ m altitude) in Antarctica, designed to detect radio pulses from ultra-high energy (over $10^{17}$ eV) air showers coming from near-horizon directions. The targeted sources include cosmic rays, Earth-skimming tau neutrinos, and most of all, the anomalous near-horizon upward-going events of yet...
The cosmic rays observed at Earth have propagated through the universe over cosmological distances. The propagation should effect both the observed spectrum of cosmic rays and the abundance of different nuclear species that are observed at each energy. By performing a combined fit of Telescope Array spectrum and composition measurements to a simple source model consisting of a universal...
Flat spectrum radio quasars (FSRQs) have been detected at TeV energies by ground-based atmospheric Cherenkov telescope mainly during flaring states. VERITAS is carrying out the first systematic and unbiased search for TeV emissions from a set of FSRQs. Fermi-LAT-detected FSRQs with positive declinations and extrapolated fluxes from the 3FHL catalog exceeding 1% Crab at >200 GeV after...
The DEAP-3600 experiment searches for dark matter via the interactions of WIMPs with a liquid argon target. The experiment is located at SNOLAB in Sudbury, Ontario 2 km underground to shield the detector from cosmic rays. The detector consists of an acrylic sphere with an inner diameter of ~170 cm containing ~3300 kg of liquid argon. Liquid argon is chosen as a target due to its ability to...
High-frequency-peaked BL Lacs (HBLs) dominate the extragalactic TeV sky, with more than 50 objects detected by the current generation of TeV observatories. Still, the properties of TeV-emitting HBLs as a population are poorly understood due to biases introduced by the observing strategies of Cherenkov Telescopes, limiting our ability to estimate the potential contribution of TeV blazars to the...
The Telescope Array experiment is an ultra-high energy cosmic ray observatory located in Millard County, Utah, USA. The observatory consists of 3 fluorescence detector (FD) stations and 507 surface detectors (SD) that cover an area of ~700 km2. Hybrid trigger is an external trigger system for the SD arrays that prompts the SD to perform data acquisition when an FD detects a...
The low flux of ultra-high-energy cosmic rays (UHECRs) makes it challenging to understand their origin and nature. A very large effective aperture is provided by the lunar Askaryan technique. Particle cascades in a dielectric medium produce radio emission through the Askaryan effect. Ground based radio telescopes are used to search for nanosecond radio pulses that are produced when cosmic rays...
The Wavelength-shifting Optical Module, or WOM, is a novel optical sensor that uses wavelength shifting and light guiding to substantially enhance the photosensitive area of UV optical modules. It has been designed for the IceCube Upgrade, a seven-string extension of the IceCube detector planned for the 2023/2024 South Pole deployment season, but its design can be applied to any large particle...
Probing the ultra-high energy cosmic ray (UHECR) spectrum beyond the cutoff at ~40 EeV requires an observatory with an acceptance that is impractical to achieve with ground arrays. We present a concept, designated the Zettavolt Askaryan Polarimeter (ZAP), for radio detection of UHECRs impacting the Moon’s regolith from low-lunar orbit. ZAP would observe several thousands of events above the...
Currently, the Baikal-GVD neutrino telescope consists of 7 clusters of 288 photodetectors. Each cluster is a functionally complete detector which can register events in stand-alone mode and jointly with other clusters. Joint operation of the clusters requires time synchronization with nanosecond accuracy. This paper presents the methods of time synchronization of the clusters, the results of a...
Markarian 501 (Mrk 501) is one of the brightest very high energy (VHE, E> 100 GeV) gamma-ray blazars. It is located in our neighborhood, at redshift z = 0.034. During a multi-wavelength campaign in July 2014, Mrk 501 displayed the highest X-ray activity observed by the Neil Gehrels Swift X-ray telescope (XRT) since its launch. The X-ray spectra displayed during this flaring episode were very...
Time-dependent energy spectra of galactic cosmic rays (GCRs) carry fundamental information regarding their origin and propagation. When observed at the Earth, these spectra are significantly affected by the solar wind and the imbedded solar magnetic field that permeates the heliosphere, changing significantly over an 11-year solar cycle. Energy spectra of GCRs measured during different epochs...
The observation of various cosmic ray particles at the Earth had been done with the PAMELA space detector for almost 10 years, from June 2006 to January 2016. The AMS-02 space experiment provides similar cosmic ray data. The purpose of this work is to utilize the available state-of-the-art numerical modulation model for the transport of cosmic rays in the heliosphere to compute the modulation...
The Askaryan Radio Array (ARA) is a gigaton size neutrino radio telescope located at the near geographic South Pole. ARA has five independent stations designed to detect Askaryan emission coming from the interaction between ultra-high energy neutrinos ( > 10 PeV ) and Antarctic ice. Each station corresponds of 16 antenna clusters deployed in a matrix shape under ~200 m deep in the ice. The...
High-energy neutrinos with energies above a few $10^{16}~$eV can be measured efficiently with in-ice radio detectors which complement optical detectors such as IceCube at higher energies. Several pilot arrays explore the radio technology successfully in Antarctica. Because of the low flux and interaction cross-section of neutrinos it is vital to increase the sensitivity of the radio detector...
Many ultra high energy neutrino detection experiments seek radiowave signals from neutrino interactions deep within polar ice, and an understanding of in-ice radiowave propagation is therefore of critical importance. The parabolic equation (PE) method for modeling the propagation of radio waves is a suitable intermediate between ray tracing and finite-difference time domain (FDTD) methods in...
Phased array radio-frequency (RF) systems have a wide variety of applications in engineering and physics research. Phased array designs are proposed as a trigger system for Askaryan-class in-situ ultra-high energy (UHE) neutrino detectors. Located in Antarctica, these detectors will record RF pulses generated by UHE neutrinos via the Askaryan effect. Modelling the response of phased arrays is...
We describe a radio-frequency polarization measurement by the ARIANNA surface station using a residual hole from the South Pole Ice Core (SPICEcore) Project. Radio pulses were emitted from a transmitter located down to 1.7 km below the snow surface. After deconvolving the raw signals for the detector response and attenuation from propagation through the ice, the signal pulses show no...
We report on the observation of an excess of E>300 TeV gamma-ray candidate events in temporal and spatial coincidence with the IceCube high-energy neutrino alert consistent with the origin in the Cygnus Cocoon. The Cygnus Cocoon is a prospective Galactic source of high-energy neutrinos and photons. The observations have been performed with Carpet-2, a surface air-shower detector equipped with...
The global features of the modulation of galactic cosmic ray protons and helium nuclei are studied in the heliosphere from solar minimum to maximum activity with a comprehensive, three-dimensional, drift model and compared to proton and helium observations measured by PAMELA from 2006 to 2014. Combined with accurate very local interstellar spectra (VLIS) for protons and helium nuclei, this...
The Telescope Array Low energy Extension (TALE) experiment in Utah, U.S.A., consists of 10 atmospheric fluorescence telescopes and 80 Surface Detectors (SDs) spread over an area of 21 $km^2$. The SD array consists of 40 SDs at 400 m spacing and 40 SDs at 600 m spacing. The TALE-SD was completed in February 2018 and has been in steady operation since then, triggering at a rate of about 30 air...
The Telescope Array (TA) cosmic rays detector located in the State of Utah in the United States is the largest ultra high energy cosmic rays detector in the northern hemisphere. The Telescope Array Low Energy Extension (TALE) fluorescence detector (FD) was added to TA in order to lower the detector's energy threshold, and has succeeded in measuring the cosmic rays energy spectrum and mass...
Cost effective in-ice radio detection of neutrinos above a few $10^{16}~$eV has been explored successfully in pilot-arrays. A large radio detector is currently being constructed in Greenland with the potential to measure the first cosmogenic neutrino, and an order-of-magnitude more sensitive detector is being planned with IceCube-Gen2. We present the first end-to-end reconstruction of the...
The Radio Neutrino Observatory Greenland (RNO-G) is planned to be the first large-scale implementation of the in-ice radio detection technique. It targets astrophysical as well as cosmogenic neutrinos with energies above 10 PeV. The deep component of a single RNO-G station consists of three strings with antennas to capture horizontal as well as vertical polarization. This contribution shows a...
The Payload for Ultrahigh Energy Observations (PUEO) is a NASA Long-Duration Balloon Mission that has been selected for concept development. PUEO have unprecedented sensitivity to ultra-high energy neutrinos above 10^18 eV. PUEO will be sensitive to both Askaryan emission from neutrino-induced cascades in Antarctic ice and geomagnetic emission from upward-going air showers that are a result...
The in-ice radio detection of the radio signals caused by the interaction of high energy neutrinos in vast natural media like polar ice, will be a promising technique to detect neutrinos of energies beyond the ones thus far measured. Because of the large attenuation length in ice for radio O(1km), sparse arrays can be built implying large effective volumes.
The simulations of effective...
The Non-Imaging CHErenkov Array (NICHE) is a low energy extension to Telescope Array (TA) using an array of closely spaced (~100 m) light collectors covering an area of ~2 square km. It is being deployed in the field-of-view of the FD for the TA Low Energy Extension (TALE) and overlaps with the TALE FD in the energy range above 2 PeV. Cosmic ray air showers with energies 1-100 PeV will be...
We present the energy spectrum of cosmic rays measured at the Pierre Auger Observatory from $6 \times 10^{15}$ eV up to the most extreme energies where the accumulated exposure reaches about 80 000 km$^2$ sr yr. The wide energy range is covered with five different measurements, namely using the events detected by the surface detector with zenith angles below 60 degrees and applying different...
Evolutionary algorithms are a type of artificial intelligence that utilize principles of evolution to efficiently determine solutions to defined problems. These algorithms are particularly powerful at finding solutions that are too complex to solve with traditional techniques and at improving solutions found with simplified methods. The GENETIS collaboration is developing genetic algorithms...
The High-Energy Particle Detector (HEPD) onboard the China Seismo-Electromagnetic Satellite (CSES-01) - launched in February 2018 - is a light and compact payload suitable for measuring electrons (3-100 MeV), protons (30-300 MeV), and light nuclei (up to a few hundreds of MeV) with a high energy resolution and a wide angular acceptance. The very good capabilities in particle detection and...
The Cosmic-Ray Isotope (CRIS) and Solar Isotope Spectrometer (SIS) on the Advanced Composition Explorer(ACE) have measured energy spectra of cosmic-ray elements and isotopes since launch in 1997. We report energy spectra of abundant elements from C to Ni during solar minimum conditions from the 1997, 2009, and 2019-2020 solar minima and compare peak intensities with solar-wind conditions in...
We have been observing cosmic rays and gamma rays above TeV energies with an air shower (AS) array located in Tibet, China at an altitude of 4,300 m and in operation since 1990. In 2014 we added to the air shower array an underground muon detector (MD) array that enables us to observe gamma-ray-induced air showers with far better sensitivity than before, suppressing background cosmic-ray...
The Radio Neutrino Observatory in Greenland (RNO-G) is designed to make the first observations of ultra-high energy neutrinos at energies above 10 PeV, playing a unique role in multi-messenger astrophysics as the world's largest in-ice Askaryan radio detection array. The experiment will be composed of 35 autonomous stations deployed over a 5 x 6 km grid near NSF Summit Station in Greenland....
The Askaryan Radio Array (ARA) is a ground-based radio detector at the South Pole designed to capture Askaryan emission from ultra-high energy neutrinos interacting within the Antarctic ice. The newest ARA station has been equipped with a phased array trigger, in which radio signals in multiple antennas are summed in predetermined directions prior to the trigger. In this way, impulsive signals...
An increasing number of experiments are targeting GHz bandwidth impulsive radiation induced by high energy neutrinos in ice or high energy cosmic ray air showers. Beamforming triggers improve detection prospects at low signal-to-noise ratio (SNR), since effective SNR scales as the square root of the number of phased array antennas in a coherent sum. However, this also brings high technological...
The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both...
With the construction of RNO-G and plans for IceCube-Gen2, neutrino astronomy at EeV energies is at the horizon for the next years. Here, we determine the neutrino pointing capabilities and explore the sensitivity to the neutrino flavor for an array of shallow radio detector stations. The usage of deep learning for event reconstruction is enabled through recent advances in simulation codes...
We consider in our study the exact two-dimensional (2D) transport equation (TPE) for galactic cosmic ray (GCR) intensity in the heliosphere, averaged over longitude, and derived by averaging the full three-dimensional (3D) steady-state TPE over longitude. As we showed before, this exact 2D TPE is equal to that with the averaged 3D TPE coefficients but with the “source-term” Q2D due to 3D...
Interstellar clouds can act as target material for hadronic cosmic rays; gamma-rays produced through inelastic proton-proton collisions and spatially associated with the clouds can provide a key indicator of efficient particle acceleration.
However, even for PeVatron sources reaching PeV energies, the system of cloud and accelerator must fulfil a several conditions in order to produce a...
The compact imaging air-Cherenkov telescope HAWC’s Eye was developed to operate together with the High-Altitude Water Cherenkov Gamma-Ray Observatory (HAWC). The combination of both detection techniques in a hybrid setup provides a significant improvement in energy and angular resolution, aiming for improved measurements of the cosmic ray composition above 10 TeV and contributing to the...
Abstract Imaging Atmospheric Cherenkov telescopes (IACTs) are designed to detect cosmic gamma rays. As a by-product, IACTs detect Cherenkov flashes generated by millions of hadronic air showers every night. We present the proton energy spectrum from several hundred GeV to several hundred TeV, retrieved from the hadron induced showers detected by the MAGIC telescopes. The protons are...
The Telescope Array (TA) is a hybrid cosmic ray detector deployed in 2007 in Millard County, Utah, USA, which consists of a surface detector of 507 plastic scintillation counters spanning a 700 km$^2$ area on the ground that is overlooked by three fluorescence detector stations. The High Resolution Fly's Eye (HiRes) experiment is a predecessor of TA, which consisted of two fluorescence...
The supernova remnant (SNR) G106.3+2.7 is associated with a 100 TeV gamma-ray source reported by HAWC and is thus a promising PeVatron candidate. However, because of the poor angular resolution of HAWC, it is difficult to pinpoint the origin of the 100 TeV source. Because the SNR contains an energetic pulsar wind nebula (PWN) dubbed Boomerang and powered by the pulsar PSR J2229+6114, it is...
The proposed ARIANNA neutrino detector, located at sea-level on the Ross Ice Shelf, Antarctica, consists of 200 autonomous and independent detector stations separated by 1 kilometer in a uniform triangular mesh. The primary science mission of ARIANNA is to search for sources of neutrinos with energies greater than 100 PeV, complementing the reach of IceCube. An ARIANNA observation of a...
The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ~PeV energies and is starting to identify first point source candidates.
The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the measured astrophysical spectrum, to identify neutrino sources, and to...
Galactic cosmic rays (GCRs) entering the heliosphere and propagating towards Earth are subject to various modulation processes including drifts, convection, adiabatic energy changes, and diffusion as a result of the turbulent solar wind. This transport can be described by the Parker equation (Parker, 1965). A widely used first-order approximation of the Parker equation is the Force-Field...
The accurate measurements of the galactic cosmic ray (GCR) fluxes as function of time and energy by the Alpha Magnetic Spectrometer (AMS) give us unique information to search dark matter, to study the dynamics of solar modulation, to constraint the parameters in modulation model, to improve the precision of radiation dose prediction in the ongoing deep space exploration.
The transport of low...
The Large High Altitude Air Shower Observatory(LHAASO) is a hybrid extensive air shower(EAS) array with an area of about 1km2 at an altitude of 4410 m a.s.l. in Sichuan province, China. It contains three sub-detectors: 1 km2 array (LHAASO-KM2A) composed of electromagnetic particle (ED) and muon detectors (MD); water Cherenkov detector array(LHAASO-WCDA) and 18 wide field-of-view air Cherenkov...
The Telescope Array (TA) Cosmic Ray Observatory is the largest cosmic ray detector in the northern hemisphere. TA was built to study ultra-high-energy cosmic rays (UHECRs), cosmic rays with energies above 1 EeV. TA is a hybrid detector, employing both a surface detector array and fluorescence telescopes. We present a measurement of the cosmic ray energy spectrum for energies above $10^{17.5}$...
Thanks to recent technological development, a new generation of experiments have been developed with more sensitivity in the energy interval from 10 TeV to 1 PeV, such as HAWC. Due to its designs and high altitude, the HAWC air shower observatory can provide a bridge between the data from direct and indirect cosmic ray detectors. In 2017 the HAWC collaboration published their first results on...
The Askaryan Radio Array (ARA) at the South Pole is designed to detect the radio signals produced by ultra high-energy cosmic neutrino interactions in the ice. There are 5 independent ARA stations, one of which (ARA5) includes a low-threshold phased array trigger string. The Data Acquisition System in all ARA stations is equipped with the Ice Ray Sampler second generation (IRS2) chip, a...
The determination of energy spectrum of different species above 100 TeV is still one of the main challenges in cosmic ray physics. The energy spectrum of the individual component is an important tool to investigate the cosmic ray production and propagation mechanisms. A preliminary results of mixed proton and helium energy spectrum, obtained with the combined data of six Cherenkov telescopes,...
The GRAND project aims to detect ultra-high-energy neutrinos, cosmic rays and gamma rays, with an array of 200,000 radio antennas over 200,000 km2, split into ~20 sub-arrays of ~10,000 km2 deployed worldwide. The strategy of GRAND is to detect air showers above 10^17 eV that are induced by the interaction of ultra-high-energy particles in the atmosphere or in the Earth crust, through its...
Direct detection experiments search for dark matter-induced signals in Earth-based detectors. I will present a short review on the current status and future of the field and will concentrate on selected results on the direct search for WIMPs, axions and beyond
The Telescope Array (TA) is the largest cosmic ray observatory in the Northern Hemisphere. It is designed to measure the properties of cosmic rays over a wide range of energies. TA with it's low energy extension (TALE) observe cosmic ray induced extensive air showers between 2x10^15 and 2x10^20eV in hybrid mode using multiple instruments, including an array of scintillator detectors at the...
We present a pipeline for fast GRB source localization for the Advanced Particle-astrophysics Telescope. APT records multiple Compton scatterings of incoming photons across 20 CsI detector layers, from which we infer the incident angle of each photon's first scattering to localize its source direction to a circle centered on the vector formed by its first two scatterings. Circles from multiple...
The mass composition is one of the key information to understand the origin of ultra-high energy cosmic rays. The interpretations of the mass composition from results by air shower experiments depend on hadronic interaction models used for the simulation. The uncertainties due to interaction models are reduced using recent experimental results at LHC.
However, due to no experimental results...
The Pierre Auger Observatory has a large exposure to search for upward propagating shower-like events, and we have used 14 years of its Fluorescence Detector (FD) data to perform a generic search for such events. Recent observations of two coherent radio pulses with the ANITA detector are consistent with steeply upward-going cosmic-ray showers with energies of few tenths of an EeV and remain...
In light of the most recent observations of late afterglows produced by the merger of compact objects or by the core-collapse of massive dying stars, we research the evolution of the afterglow produced by an off-axis top-hat jet and its interaction with a surrounding medium. The medium is parametrized by a power law distribution of the form $n(r)\propto r^{-k}$, where $k$ is the stratification...
Interplanetary coronal mass ejections (ICMEs) cause decreases, so-called Forbush decreases, in the cosmic ray (CR) intensities. FDs are seen as up to 25% decreases in neutron monitor counts at Earth, lasting up to over a week. An ICME is thought to cause a FD through two mechanisms: by enhancing diffusion in the ICME shock wave sheath; and by preventing the CRs from penetrating the magnetic...
'We present a new method to explore simple ad-hoc adjustments to the predictions of hadronic interaction models to improve their consistency with observed two-dimensional distributions of the depth of shower maximum, Xmax, and signal at ground level, as a function of zenith angle. The method relies on the assumption that the mass composition is the same at all zenith angles, while the...
Measurements of the muon content of extensive air showers at the highest energies show discrepancies compared to simulations as large as the differences between proton and iron. This so-called muon puzzle is commonly attributed to a lack of understanding of the hadronic interactions in the shower development. Furthermore, measurements of the fluctuations of muon numbers suggest that the...
The ANITA collaboration has recently reported on four anomalous cosmic-ray-like events observed during ANITA's fourth flight that are observationally consistent with air showers from upgoing particles emerging from the Antarctic ice. One possible interpretation of these events is that they are due to ultrahigh energy tau neutrinos interacting in the Earth, resulting in an extensive air shower...
Relativistic hadronic plasmas have an intriguing property known as hadronic supercriticality: they can, under certain conditions, abruptly and efficiently release the energy stored in protons through photon outbursts. These photon flares may have a direct analogy to those observed from compact astrophysical objects, such as Gamma Ray Bursts (GRBs). Here, we investigate for the first time the...
The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment successfully recorded the data for about 539 days from August 2017 to February 2019. In this talk, we report the measurement of the cosmic-ray proton energy spectrum from the ISS-CREAM experiment in the energy range of 2.5 TeV−650 TeV. For the analysis, we used the silicon charge detector (SCD) placed...
We present the results of an analysis of on-orbit data from the Cosmic Ray Energetics And Mass instrument for the International Space Station. The design objective is to measure the elemental spectra of cosmic rays from Z=1 to Z=26 over the energy range of $10^{12} - 10^{15}$ eV. The instrument was installed on the ISS on August 22, 2017 with operations terminated on February 12, 2019,...
In heavy ion collisions, the main goal is to create the quark-gluon plasma (QGP) and then study its properties in order to understand quantum chromodynamics at extreme conditions. Collective flow serves as an important probe to study the production and characterize the property of the QGP. In ultra high energy cosmic rays (UHECR), the collision energies are an order of magnitude higher than...
DAMPE (DArk Matter Particle Explorer) is a Space mission project promoted by the Chinese Academy of Sciences (CAS), in collaboration with Universities and Institutes from China, Italy and Switzerland. The satellite hosting the DAMPE detector has been successfully launched on December 17th, 2015, and is currently collecting data in a stable way. The main goals of the mission are: indirect...
Cosmic Ray Energetic And Mass for the International Space Station (ISS-CREAM) was designed to study high-energy cosmic-rays on the ISS. The ISS-CREAM instrument can measure high energy cosmic rays up to PeV energies and recorded data from August 22nd, 2017 to February 12th, 2019. In this analysis, the silicon charge detector (SCD), calorimeter (CAL) and top and bottom counting detectors...
We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. We derive the muon densities as functions of energy at reference distances of 600 m and 800 m for primary energies between 2.5 PeV and 40 PeV and between 9 PeV and 120 PeV, respectively. The measurements are consistent with the predicted...
Around 11.4 million years ago a young, highly magnetized neutron star, a magnetar, in the Sculptor galaxy released an enormous amount of energy in the form of a giant flare. On April 15$^{\rm th}$ 2020 some of the emitted photons were detected by a number of gamma-ray telescopes around Earth and Mars. While the analysis of this event, GRB 200415A, was...
Dark Matter Particle Explorer(DAMPE) is a calorimetric-type, satellite-borne detector for observations of high energy electrons, gamma-rays, and cosmic-ray nuclei. Using five years data recorded with DAMPE from January 1, 2016 to December 31, 2020, we measure the spectrum of iron nuclei in a wide energy range. Detailed studies of the fragmentation of iron in the detector have been performed...
Multi-messenger observations of transient astrophysical sources have the potential to characterize the highest energy accelerators and the most extreme energy environments in the Universe. Detection of neutrinos, in particular tau neutrinos generated by neutrino oscillations in transit from their sources to Earth, is possible for neutrino energies above 10 PeV using optical Cherenkov detectors...
We present the measurements of the energy spectra of carbon and oxygen nuclei in cosmic rays based on 4 years of observation with the Calorimetric Electron Telescope (CALET) on the International Space Station. The energy spectra are measured from 10 GeV/n to 2.2 TeV/n with an all calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length and equipped with...
Characteristics of muons with a threshold $\varepsilon_{thr} \geq$ 1 GeV based on the air showers data in Yakutsk array were analyzed. Quantitative estimation of muons at different distance from the shower axis and the ratio of muon and charged particles at a distance of 600 m are obtained. An empirical relationship between the fraction of muons and longitudinal development – the depth of...
Measurements of KASCADE-Grande on the muon size in high energy extensive air showers (EAS) have provided evidence that the actual attenuation length of shower muons in the atmosphere is larger than the expectations from the hadronic interaction models QGSJET-II-04, EPOS-LHC and SIBYLL 2.3. This discrepancy is related to a deficient description of the shower muon content with atmospheric depth...
Calorimetric Electron Telescope (CALET) is aiming to measure the main components of high energy cosmic rays up to ~1 PeV in order to understand the cosmic ray acceleration and propagation. The detector consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter, is located on the International Space Station. The thickness of the calorimeter corresponds to 30...
Fast radio burst (FRBs) are an exciting class of bright, extragalactic, millisecond radio transients. The recent development of large FOV radio telescopes has caused a rapid rise in the number of identified single burst and repeating FRBs. This has allowed for extensive multi-wavelength follow-ups to search for the potential counterparts predicted by theoretical models. New observations of...
Gamma-ray bursts (GRBs) are the most powerful outbursts of electromagnetic radiation in our Universe. A subset of GRBs are accompanied by precursors, dim gamma-ray flashes that precede the main outburst by tens to hundreds of seconds. We present an analysis of 11 years of Fermi-GBM data to identify these precursor flashes. For each of the 2364 analyzed GRBs, a time window of 2000 s centered on...
Despite over 50 years of observations of Gamma-Ray Bursts (GRBs) many open questions remain about their nature and their environments in which the emission takes place. Polarization measurements of the GRB prompt emission have long been theorized to be able to answer most of these questions. The POLAR detector was a dedicated GRB polarimeter developed by a Swiss, Chinese and Polish...
We present characteristics of hadronic cascades from interactions of cosmic rays in the atmosphere, simulated by the novel CORSIKA 8 framework. The simulated spectra of secondaries, such as pions, kaons, baryons and muons, are compared with cascade equations solvers CONEX and MCEq in air shower mode and full 3D air shower Monte Carlo simulations using the legacy CORSIKA 7 and AIRES. A novel...
Hypernova remnants (HNRs) and magnetar wind nebulae (MWNe), supported by new-born millisecond magnetars, as well as magnetar giant flares are promising PeVatron candidates and even potential sources of ultra high energy cosmic rays (UHECRs, E>10^{18} eV). Nonthermal high-energy (HE, E>100 MeV) and very high-energy (VHE, E>100 GeV) γ-ray emission from magnetars' outskirts should be an...
Nowadays the implementation of artificial neural networks in high-energy physics has obtained excellent results on improving signal detection. In this work we propose to use neural networks (NNs) for event discrimination in HAWC. This observatory is a water Cherenkov gamma-ray detector that in recent years has implemented algorithms to identify horizontal muon tracks. However, these algorithms...
Fast radio bursts (FRBs) are one of the most exciting new mysteries of astrophysics. Their origin is still unknown, but recent observations seems to link them to Soft Gamma Repeaters and, in particular, to magnetar giant flares (MGFs). The recent detection of a MGF at GeV energies by the Fermi Large Area Telescope (LAT) motivated the search for GeV counterparts to the >100 currently known...
The search for ultra-high energy neutrinos is more than half a century old. While the hunt for these neutrinos has led to major leaps in neutrino physics, including the detection of astrophysical neutrinos, neutrinos at the EeV energy scale remain undetected. Proposed strategies for the future have mostly been focused on direct detection of the first neutrino interaction, or the decay shower...
During LHC runs 1-2 the LHCf experiment measured neutral particles in the forward region of proton+proton and proton+lead ion collisions. These measurements allow the testing and fine tuning of hadronic interaction models in a phase space region relevant for studying the development of cosmic-ray air showers. One of the limitations in using the results obtained so far by LHCf is linked to the...
Direct measurements of cosmic-rays (CRs) is fundamental to achieve a better understanding of their origin, mechanism of acceleration and propagation in the Galaxy. Due to the hardening around a few hundred GeV/n in the spectrum of proton, helium and heavy nuclei from recent observations, it is of great importance to provide new and precise measurements of the region of transition for each...
The number of muons observed at the ground from air showers is sensitive to the mass composition of cosmic ray. Large High Altitude Air Shower Observatory is a hybrid extensive air shower array and the KM2A is a sub-array covering an area of 1 km$^2$, consisting of electromagnetic detectors and muon detectors, can measure the muon content and shower size of the air shower simultaneously with...
The CALorimetric Electron Telescope (CALET) is a space instrument designed to carry out precision measurements of high energy cosmic-rays.
It was installed onboard the International Space Station in August 2015 and since mid-October 2015 it is collecting data with excellent performance and no significant interruptions.
The instrument consists of two layers of segmented plastic scintillators...
The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, has collected a large sample of cosmic-ray charged particles and gamma-rays over a wide energy interval. The instrument consists of two layers of segmented plastic scintillators to identify the charge of individual elements from proton to iron (and above), a thin imaging tungsten...
The DArk Matter Particle Explorer (DAMPE) is a space-based particle detector launched in a Sun-synchronous orbit on December 17th, 2015 from the Jiuquan Satellite Launch Center, in China. It is taking data very smoothly since more than 5 years. Science goals of the DAMPE mission include the study of the electron-positron energy spectrum, the study of galactic cosmic-rays, gamma-ray astronomy,...
Ultra High Energy Cosmic Ray (UHECR) detectors have been reporting on the proton-air cross section measurement beyond the capability of particle accelerators since 1984. The knowledge of this fundamental particle property is vital for our understanding of high energy particle interactions and could possibly hold the key to new physics. The data used in this work was collected over eight years...
One of the first setups at which an excess of muons in comparison with the expectation (“muon puzzle”) was detected and its dependence on the primary energy was measured, was the NEVOD-DECOR complex. Since various mechanisms for the appearance of an excess of multi-muon events (of cosmophysical or nuclear-physical nature) should have different effects on the muon energy, one of the possible...
Cosmic ray muons arise from the showers of secondary particles produced in the interactions of primary cosmic particles with air nuclei at the top of the atmosphere. The interaction products, pions and kaons composing showers mostly decay to muons reflect the details of the hadronic interactions depending on their energy. Measurements of the charge ratio and polarization of cosmic ray muons...
An accurate modeling of neutrino flux attenuation and the distribution of leptons they produce in transit through the Earth is an essential component to determine neutrino flux sensitivities of underground, sub-orbital and space-based detectors. Through neutrino oscillations over cosmic distances, astrophysical neutrino sources are expected to produce nearly equal fluxes of electron, muon and...
Multiple experiments reported evidences of a muon deficit in air-shower simulations with respect to data, which increases with the primary energy. In this work, we study the muon deficit using measurements of the muon density at $1000\,$m from the shower axis obtained by the Akeno Giant Air Shower Array (AGASA). The selected events have reconstructed energies in the range...
The number of muons in extensive air showers predicted using LHC-tuned hadronic interaction models, such as EPOS-LHC and QGSJetII-04, is smaller than observed in showers recorded by leading cosmic rays experiments. In this paper, we present a new method to derive muon rescaling factors by analyzing reconstructions of simulated showers. The z-variable used (difference of initially ...
Neutrinos are invisible, but their interactions with matter and their leptons signature leave an observable trace. Because the huge atmospheric neutrino noise, produced by cosmic ray rain, there is much hope for reveal highest energy neutrino as an astronomy, above TeVs energy. Neutrino and antineutrino are three. Electron traces radiate a lot therefore are short (meters) trace inside...
nuSpaceSim is a comprehensive end-to-end simulation package to model the optical and radio signals from extensive air showers (EAS) induced by cosmic neutrino interactions. The development has initially focused on modeling the upward-moving EASs sourced from tau neutrino interactions within the Earth that employs a new modeling package, nuPyProp. nuSpaceSim is designed to model all aspects of...
Fast radio bursts (FRB) are enigmatic powerful single radio pulses with durations of several milliseconds and high brightness temperatures suggesting coherent emission mechanism. For the time being a number of extragalactic FRBs have been detected in the high-frequency radio band including repeating ones. The most plausible explanation for these phenomena is magnetar hyperflares. The first...
Recently, several experiments reported a muon deficit in air-shower simulations with respect to the data. This problem can be studied using an estimator that quantifies the relative muon content of the data with respect to those of proton and iron Monte-Carlo air-shower simulations. We analyze two estimators. The first one, based on the logarithm of the mean of the muon content, is built from...
Astrophysical Ultra-High Energy (UHE) neutrinos probe the accelerators of Ultra-High Energy Cosmic Rays (UHECR), the composition of UHECR, and neutrino physics at the highest energies. UHE-tau neutrinos (E > 10 PeV) skimming the Earth produce tau leptons which can emerge from the ground, decay, and initiate an upward-going particle shower in the atmosphere. By measuring the Cherenkov emission...
We study the periodic variations of GCRs related to solar rotation based on neutron monitor, ACE/CRIS, STEREO and SOHO/EPHIN measurements. Now there is an opportunity to re-analyze the polarity dependence of the amplitudes of the recurrent GCR variations in 2007-2009 for negative A < 0 polarity and in 2017-2019 for A > 0. We use the Fourier analysis method to study the periodicity in the GCR...
Neutron monitor cosmic rays and Sun Spot Number (SSN) measurements from 1964 to 2019 corresponding with the Solar Cycles 20–24 have been used. A Global Neutron Monitor (GNM) has been built as virtual representative station to characterize solar activity. Morlet wavelet analysis was applied to the GNM and SSN in order to determine possible periodicities. This analysis was applied both to
the...
We report the properties of aluminum (Al) cosmic rays in the rigidity range 2.15 GV to 3.0 TV with 0.51 million nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. We observed that above 6 GV the Al flux is well described by the weighted sum of the silicon flux (primary cosmic rays) and the fluorine flux (secondary cosmic rays). The fraction of...
We report the properties of sodium (Na) cosmic rays in the rigidity range 2.15 GV to 3.0 TV with 0.46 million nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. We observed that above 6 GV the Na flux is well described by the weighted sum of the silicon flux (primary cosmic rays) and the fluorine flux (secondary cosmic rays).
The fraction of...
We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 million iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with...
We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 million Ne, 2.2 million Mg, and 1.6 million Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The...
Tau neutrinos interacting in the Earth can result in upgoing extensive air showers. These showers produce optical and radio emission that can be detected by orbital and suborbital platforms. As part of NASA’s nuSpaceSim program, to develop a comprehensive end-to-end simulation package to model these signals, we present results of radio emission simulations using ZHAireS for observation from...
The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment took high energy cosmic ray data for 539 days after its successful installation
on the ISS in August 2017. The ISS-CREAM instrument is configured with complementary
particle detectors capable of measuring elemental spectra for Z = 1 - 26 nuclei in the energy
range 1012 – 1015...
We present the results of a search for upward-going showers using the Fluorescence Detector (FD) of the Pierre Auger Observatory. Upward-going air showers are a possible interpretation of the recent events reported by the ANITA Collaboration in the energy range above $10^{17}$ eV. Given its operation time and wide field of view, the FD is sufficiently sensitive to upward-going events and can...
Since the detection of Gravitational Waves (GW), a new window of multi-messenger astronomy was opened. The first GW event with an electromagnetic counterpart was GRB 170817A, an under luminous burst with properties of a short burst that was detected by Fermi-GBM, among other observatories. This burst revealed two different spectral components in the GBM energy range, a short-lasting...
The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a concept for a neutrino telescope designed to measure tau lepton air showers generated from tau neutrino interactions near the horizon. This detection mechanism provides a pure measurement of the tau flavor of cosmogenic neutrinos, which could be used to set limits on the observed flavor ratios for cosmogenic neutrinos in a...
Precise understanding of hadronic interactions at high energies is a key to improve chemical composition measurements of very high energy cosmic-rays and to solve the muon excess issue observed in high energy cosmic-ray experiments using air-shower technique. The LHCf and RHICf experiments measures the differential production cross sections of very forward neutral particle as photons, neutral...
The mass composition is one of the key observables to understand the nature and origin of ultrahigh-energy cosmic rays (UHECRs). The study of hadronic interactions at energies well beyond human-made accelerators is a fundamental probe of elementary particle physics. In previous analyses, the properties of the hadronic interactions were estimated under the assumption of a certain mass...
In the sub-TeV regime, the most widely used hadronic interaction models disagree significantly in their predictions for post-first interaction and ground-level particle spectra from cosmic ray induced air showers. These differences generate an important source of systematic uncertainty in their experimental use. We investigate the nature and impact of model uncertainties through a...
Very-High-Energy (VHE) neutrinos are expected to be produced by cosmic-ray interactions with the Cosmic Microwave Background (CMB). In these photo-hadronic interactions, muon- and electron-neutrinos are produced. As these neutrinos traverse the cosmic void, they morph from one flavor to another, yielding, in the standard scenario, a democratic flavor composition at their arrival on Earth. This...
The IceCube Neutrino Observatory, with its deep in-ice detector IceCube and surface array IceTop, provides the unique possibility to measure the low-energy (∼1 GeV) and high-energy (>500 GeV) muon component as well as the electromagnetic component of cosmic-ray air showers simultaneously. For events coincident between the two detectors, IceTop provides an estimate of the primary cosmic-ray...
The ultrahigh-energy (UHE; > 10^6 GeV) neutrinos band is one of the last unopened windows to the universe. Although UHE neutrinos are not yet detected, we know they must exist. UHE neutrinos are either produced in interactions of ultrahigh-energy cosmic rays with the cosmic microwave background (cosmic neutrinos) or inside or close by cosmic-ray accelerators. This presentation discusses the...
Using neutron time-delay data from neutron monitors (NMs), we can extract the leader fraction, L, of neutron counts that do not follow a previous neutron count in the same counter tube due to the cosmic ray shower. L is the inverse of the neutron multiplicity and serves as a proxy of the cosmic ray spectral index over the rigidity range of the NM response function. We have outfitted...
Earth-skimming neutrinos are those which travel through the Earth’s crust at a shallow angle. For Ultra-High-Energy (E$_\nu$ > 1 PeV; UHE) earth-skimming tau neutrinos, there is a high-probability that the tau particle created by a neutrino-Earth interaction will emerge from the ground before it decays. When this happens, the decaying tau particle initiates an air shower of relativistic...
Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air...
The LHCf experiment, situated at the LHC accelerator, is composed of two independent detectors located at 140 metres from the ATLAS interaction point (IP1) on opposite sides along the beam axis. LHCf covers the pseudorapidity region above 8.4, with the capability to measure zero-degree neutral particles. The physics motivation of the experiment is to test the hadronic interaction models...
We have used COSIKA to study, through air-shower simulations, observational signatures of a possible increase in cross-section and multiplicity in collisions with center-of-mass energies exceeding $\sim$ 50 TeV. We have simulated collisions for primaries with energies in the range $10^8 - 10^{12}$ GeV. We have used two different high energy models for the simulations, EPOS LHC and...
The deficit of muons in the simulation of extensive air showers is a long-standing problem and the origin of large uncertainties in the reconstruction of the mass of the high energy primary cosmic rays. Hadronic interaction models, re-tuned after early LHC data, have a more consistent description of the muon content among them but still disagree with data. Collective hadronization due to the...
Cosmic-ray-driven instabilities play a decisive role during particle acceleration at shocks and CR propagation in galaxies and galaxy clusters. These instabilities amplify magnetic fields and modulate CR transport so that the intrinsically collisionless CR population is tightly coupled to the thermal plasma and provides dynamical feedback. Here, we show that CRs with a finite pitch angle drive...
We report a study on the conversion of a giant cosmic ray observatory for air shower observation to observe cosmic ray intensity variations caused by solar activity, anisotropy associated with interplanetary disturbances, and detection of sudden cosmic ray events on the earth's surface. In this report, we use data from the surface detectors operated by the Telescope Array experiment located at...
Analysis of anisotropy of the arrival directions of galactic protons, helium, carbon and oxygen has been performed with the Alpha Magnetic Spectrometer on the International Space Station. These results allow to investigate the origin of the spectral hardening observed by AMS in these cosmic ray species. The AMS results on the dipole anisotropy are presented along with the discussion of the...
The Telescope Array (TA) experiment is located in the western desert of Utah, USA and observes ultra-high energy cosmic rays in the northern hemisphere. At the energies, the shape of the cosmic ray energy spectrum carries information of the source distribution. We present the search for differences in spectrum shape in different parts of the sky using latest data of TA surface detector (SD)...
Blazars are characterized by flux variability that is frequency-dependent and manifests in a variety of timescales. Decade-long monitoring of blazars at optical and infrared (OIR) wavelengths with the Small and Moderate Aperture Research Telescope System (SMARTS) in Chile and in gamma-rays with the Fermi Large Area Telescope (LAT) has enabled the systematic study of their multi-wavelength...
Star formation proceeds inefficiently in galaxies for reasons that remain under debate. In the local ISM it is known that the cosmic rays (CRs) provide a significant fraction of total ISM pressure and therefore contribute to hydrostatic balance. I will set out a model for the dynamical effect of CRs, directly accelerated as a result of star formation itself, on the ISM gas column. On the basis...
In the standard picture of cosmic ray transport the propagation of charged cosmic rays through turbulent magnetic fields is described as a random walk with cosmic rays scattering on magnetic field turbulence. This is in good agreement with the highly isotropic arrival directions as this diffusion process effectively isotropizes the cosmic ray distribution. However, high-statistics...
The bulk propagation speed of GeV-energy cosmic rays is limited by frequent scattering off hydromagnetic waves, predominantly by waves that they generate themselves through a resonant streaming instability. In most simulations of galaxy evolution, cosmic rays are then assumed to be strongly coupled to the gas; however, when we zoom into the multiphase, frequently under-resolved ISM, we find a...
Galactic winds can alter the evolution of a disk galaxy by launching outflows from the disk that move gas into the circumgalactic medium (CGM) so that the gas is unavailable to star formation while slowing the infall of fresh gas onto the disk. One agent that is able to drive these galactic winds are GeV cosmic rays (CR) injected by supernovae into the intersellar medium. Through a...
We investigate the damping of Alfvén waves generated by the
cosmic ray resonant streaming instability as due to ion-neutral
damping, turbulent damping and non linear Landau damping, in the
warm ionised and warm neutral phases of the interstellar medium.
We do so in the context of the cosmic ray escape and propagation
in the proximity of supernova remnants. For the ion-neutral...
Molecular clouds are complex magnetised structures, with variations over a broad range of length scales. Ionisation in dense, shielded clumps and cores of molecular clouds is thought to be caused by charged cosmic rays (CRs). These CRs can also contribute to heating the gas deep within molecular clouds, and their effect can be substantial when CRs are abundant. CR propagation is predominantly...
The First G-APD Cherenkov Telescope (FACT) has been monitoring blazars at TeV energies for more than eight years. Using solid state photo sensors and performing robotic operations results in a maximized duty cycle of the instrument and minimized observational gaps, providing an unprecedented data sample of more than 14700 hours of physics data. With an unbiased observing strategy, a small...
Since starting full operations, the HAWC gamma-ray observatory has detected and monitored the high-energy TeV emission of the nearby BL Lac objects Markarian 421 and Markarian 501. HAWC performed a follow-up survey of Active Galactic Nuclei selected from the 3FHL Fermi Catalog covering 60% of the sky and up to redshift z<0.3. Using over 4.5 years of HAWC data we found low-significance evidence...
The Telescope Array (TA) experiment, the largest studying ultrahigh energy cosmic rays in the northern hemisphere, has reported an excess in the arrival direction distribution for events with energies above $5.7\times10^{19}$ eV, called the hotspot. We report here the latest results of the TA hotspot using the most recent data measured by the TA surface detector array, which is more than...
The majority of the active galactic nuclei detected at very-high-energies above 100 GeV belong to the class of blazars with a small angle between the jet-axis and the line-of-sight. Only about 10 percent of the gamma-ray AGN are objects with a larger viewing angle resulting in a smaller Doppler boosting of the emission. Originally, it was believed that gamma-ray emission can only be observed...
More than half a century after the discovery of ultra-high energy cosmic rays (UHECRs), their origin is still an open question. The study of anisotropies in the arrival directions of such particles is an essential ingredient to solve this puzzle. We update our previous analysis of large-scale anisotropies observed by the Pierre Auger Observatory using the latest data collected before the...
The deflection of cosmic rays (CRs) in the interstellar magnetic field results in an almost isotropic flux as observed on Earth. However, an anisotropy has been observed at the level of $\sim 10^{−4} − 10^{−3}$. The GRAPES-3 experiment located at Ooty, India consists of an array of 400 plastic scintillator detectors. It measures the particle densities and their relative arrival times in...
The dipole anisotropy of multi-TeV cosmic rays exhibits a strong energy dependence that is at odds with the predictions of standard isotropic diffusion models. It has been argued that the observed variation in amplitude and phase is a consequence of the global distribution of cosmic ray sources in combination with anisotropic diffusion in our local environment. For a quantitative...
The measurement of an astrophysical flux of high-energy neutrinos by IceCube is an important step towards finding the long-sought sources of cosmic rays. Nevertheless, the long exposure neutrino sky map shows no significant indication of point sources so far. The real-time follow-up of neutrino events turned out to be the most successful approach in neutrino point-source searches. It brought,...
Blazars, together with other active galactic nuclei, are the most luminous persistent sources in our universe; and therefore a prime candidate for very-high-energy (>0.2 TeV, VHE) gamma-ray observations. For the two MAGIC telescopes, the Mrk501 galaxy is among the brightest observed blazars due to its proximity.
We report a multi-wavelength and multi-messenger study of Mrk501 with data from...
QSO B0218+357 is currently the only gravitationally lensed source from which very-high-energy (VHE,>~100GeV) gamma-ray emission has been detected. We report the multiwavelength monitoring observations of this source performed between 2016 and 2020 in radio interferometry, optical, X-ray and gamma-ray bands. During the monitoring individual flares in optical, X-ray and GeV bands have been...
Flux of muon component of secondary cosmic rays is affected by varying conditions in the atmosphere. Dominant effects are barometric and temperature effect which reflect variations of atmospheric pressure and atmospheric temperature respectively. Precise modeling and correction for these meteorological effects significantly increases sensitivity of Earth-based muon detectors to variations of...
The complete IceCube Observatory has collected over 577 billion cosmic-ray induced muon events from May 2011 to May 2020. We used this data set to provide an unprecedented statistically accurate map of the cosmic ray arrival direction distribution in the TeV-PeV energy range scale in the southern hemisphere. Such an increase in event statistics makes it possible to extend the sensitivity to...
A global large-scale anisotropy in the arrival directions of cosmic rays were observed both in the Northern and Southern Hemisphere. Above 100 TeV, change in the morphology of the arrival direction distribution is appeared. However, most reports of anisotropy are from TeV to hundred TeV and only a few experiments can up to PeV with long term data accumulation. The measurement of anisotropy at...
The acceleration of non-thermal particles in collisionless shocks, especially in supernova remnant shocks, is a long standing problem for revealing the origin of Galactic cosmic-rays. In the most relied scenario, the Galactic cosmic-rays originate in the diffusive shock acceleration mechanism, and the pressure of accelerated cosmic-rays should be large comparable to the ram pressure of...
VERITAS is one of the world’s most sensitive detectors of astrophysical very high energy (VHE; E > 100 GeV) gamma rays. This observatory has operated for ~14 years, and nearly 7,000 hours of its observations have been targeted on active galactic nuclei (AGN). Approximately 300 AGN were observed with VERITAS, and 40 are detected. These studies are generally accompanied by contemporaneous,...
The high-synchrotron-peaked blazars Markarian 421 and Markarian 501 are close bright and well-studied active galactic nuclei, which feature persistent GeV and TeV emission. FACT and Fermi-LAT have been monitoring these two sources providing the densest long-term dataset of unbiased gamma ray observations. Light curves in the TeV and GeV energy bands, spanning over a five-year period, were used...
We studied the evolution of the solar neutron flux in the Earth’s atmosphere. Simulations based on the CORSIKA and FLUKA codes were performed for this purpose. We analyzed the neutron (n) emission of three flares (X17, M3.9 and X1.3), observed by the Solar Neutron Telescope at Sierra Negra (SNT-SN) and the FIB scintillator of the Space Environment Data Acquisition-Attached Payload (FIB...
We calculate the shape of the TeV-PeV cosmic-ray anisotropy (CRA) in 3D Kolmogorov turbulence. We present the first numerical calculations of the CRA down to TeV energies, using realistic values for the coherence length of the interstellar turbulence. At these low energies, the large-scale CRA aligns with the direction of local magnetic field lines around the observer. In this type of...
We investigate the dynamical effects of cosmic rays (CRs) in isolated disc galaxies. CRs are included as a non-thermal component in the advection-diffusion approximation and are dynamically coupled to the gas in the magneto-hydrodynamical simulations. The CRs are spectrally resolved with a full spectrum ranging from sub-GeV to TeV in every computational cell. We can therefore account for...
Energetic particles may have contributed to the start of life on Earth and exoplanets. The stellar energetic particle and Galactic cosmic ray fluxes that reached Earth at the time when life is thought to have begun is largely determined by the stellar wind properties. The magnetic field strength and velocity profile of a solar-type star’s wind evolve with time. Therefore, the modulation of...
Since its launch the AlphaMagneticSpectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, which resulted in a number of breakthroughs, including the spectrum of iron: because of the large fragmentation cross section and large ionization energy losses, most of CR iron at low energies is local, and may harbor some features associated...
Neutron monitors are the main ground-based instruments for continuous measurements the cosmic-ray intensity operating over more than five decades. Those instruments are energy-integrating detectors with count rates governed by the atmospheric and geomagnetic cutoffs. The geomagnetic cutoff dominates (up to 17 GV in rigidity) over most of the globe. However, it is negligible in the polar...
The calculation of asymptotic directions of approach of cosmic ray particles is an important tool in the determination of the rigidity cutoff for a given geographical site. We present the computations results of the asymptotic latitude and longitude and the magnetic rigidity cutoff for the airports located in: Apatity, Oulu, Warsaw, Lae, Buenos Aires Wellington and Mc Murdo at different...
The physical mechanism for the production of fast gamma-ray variability in blazars remains debated. Plasmoids – magnetized quasi-circular structures of plasma formed self-consistently in reconnecting current sheets – are ideal candidates for the production of broadband variable non-thermal emission. Using state-of-the-art kinetic simulations of magnetic reconnection and radiative transfer...
We account for the magnitude, direction and energy dependence of the large-scale anisotropy of ultra-high-energy cosmic rays at energies above 8 EeV and possibly Auger hot spot with the ansatz that the source distribution follows the matter distribution of the Universe. We consider the impact of energy losses during propagation and the deflections by the Galactic magnetic field. We further...
Although supernova remnants remain the main suspects as sources of Galactic cosmic rays up to the knee, the supernova paradigm still has many loose ends. The weakest point in this construction is the possibility that individual supernova remnants can accelerate particles to the rigidity of the knee, ~ 106 GV. This scenario heavily relies upon the possibility to excite current driven...
The sources of ultra-high-energy cosmic rays are still unknown, but assuming standard physics, they are expected to lie within a few hundred megaparsecs from us. Indeed, over cosmological distances cosmic rays lose energy to interactions with background photons, at a rate depending on their mass number and energy and properties of photonuclear interactions and photon backgrounds. The...
The region of the toe in the cosmic-ray spectrum, located at about 45 EeV by the Pierre Auger Collaboration, is of primary interest in the search for the origin of ultra-high energy cosmic rays (UHECRs). The suppression of the flux with increasing energy can be explained by the propagation of UHECRs in intergalactic photon fields, resulting in a shrinking of the observable universe, and/or by...
PG1553+113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band detected by the Fermi-LAT satellite. The source is also a very high-energy (>100 GeV) gamma-ray emitter. The MAGIC collaboration started a multi-year, multi-wavelength monitoring campaign of PG 1553+113 in 2015 involving several instruments in the radio, infra-red, optical photometry and...
Cosmic rays leave their sources mainly along the local magnetic field present in the region around the source and in doing so they excite both resonant and non-resonant modes through streaming instabilities. The excitation of these modes leads to enhanced particle scattering and in turn to a large pressure gradient that causes the formation of expanding bubbles of gas and self-generated...
We present a simulation of magnetosphere transparency for cosmic rays in the last two millennia. Simulations were done in the COR system, in a module for cosmic rays trajectory evaluation in different models of geomagnetic fields for period 0 to 1900 CE. The COR system available at cor.crmodels.org is also briefly presented. The global and local trends for cut-off rigidities evolution in the...
We present MHD+CR simulations probing reacceleration of pre-existing cosmic rays by long-wavelength, subsonic, compressive turbulence. With purely diffusive transport, we recover the scaling relations of Ptuskin 1988, where the reacceleration time reaches a minimum at the ``sweet spot” diffusion coefficient of the sound speed times the outer turbulence scale, $D_{\rm crit} \sim c_{s}L$. For...
The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6 × (E/10 EeV) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the...
Large-scale anisotropy at the highest energies is essential for the understanding the transition from cosmic rays of galactic origin to those of extra-galactic origin, along with the magnetic fields in the galaxy and those beyond. Motivated by a significant detection of the large-scale anisotropy above 8 EeV by the Pierre Auger Observatory (Auger), we have previously reported, using 11 years...
High-energy cosmic rays are observed indirectly by detecting the extensive air showers initiated in Earth's atmosphere. The interpretation of these observations relies on accurate models of air shower physics, which is a challenge and an opportunity to test QCD under extreme conditions. Air showers are hadronic cascades, which eventually decay into muons. The muon number is a key observable to...
The Tibet ASgamma experiment is located at 4,300m above sea level, in Tibet, China.
The experiment is composed of a 65,000 m2 surface air shower array and 3,400 m2
underground water Cherenkov muon detectors. The surface air shower array is used
for reconstructing the primary particle energy and direction, while the underground
muon detectors are used...
The total cosmic ray electron spectrum (electrons plus positrons) exhibits a break at a particle
energy of ∼ 1 TeV and extends without any attenuation up to ∼ 20 TeV. Synchrotron and inverse
Compton energy losses strongly constrain both the age and the distance of the potential sources of
TeV and multi-TeV electrons to ≈ $10^5$ yr and ≈ 100 − 500 pc, depending on both the absolute...
The Askaryan Radio Array (ARA) is an ultra-high energy (UHE) neutrino (E_nu > 10^17 eV) detector at South Pole. ARA aims to utilize radio signals detected from UHE neutrino interactions in the glacial ice to infer properties about the interaction vertex as well as the incident neutrino. To retrieve these properties from experiment data, the first step is to extract timing, amplitude and...
Recent studies with IceCube have shown signs of a time-integrated flux of astrophysical neutrinos from point-like sources such as TXS 0506+56 and NGC 1068. Time-variability of this neutrino emission from TXS 0506+56 has been studied extensively by assuming a temporal profile of the possible flare(s) or searching for temporal neutrino correlation with other electromagnetic counterparts....
The objective of the JEM-EUSO program, is the realisation of a space mission devoted to Ultra-High Energy Cosmic Ray (UHECR) science. A super-wide-field telescope will look down from space onto the night sky to detect UV photons emitted from Extensive Air Showers (EAS) generated by UHECRs in the atmosphere. The JEM-EUSO program includes different missions from ground (EUSO-TA), from...
Combining observational data from multiple instruments for multi-messenger astronomy can be challenging due to the complexity of the instrument response functions and likelihood calculation. We introduce a python-based unbinned-likelihood analysis package called i3mla (IceCube Maximum Likelihood Analysis) which is to be used with the public IceCube data format. i3mla is designed to be...
Analysis of anisotropy of the arrival directions of galactic positrons and electrons has been performed with the Alpha Magnetic Spectrometer on the International Space Station. These results differentiate between point-like and diffuse sources of cosmic rays for the explanation of the observed excess of high energy positrons. The AMS results of the dipole anisotropy are presented along with...
Energetic protons released during solar eruptive events experience scattering during their interplanetary propagation and may cross the spherical surface of radius 1 AU multiple times. Knowledge of N_cross, the average number of 1 AU crossings per particle, is therefore important to deduce the total number of protons in interplanetary space during solar energetic particle events, for example...