Jul 12 – 23, 2021
Europe/Berlin timezone

Search for exotic neutrino interactions by XMASS-I detector

Jul 12, 2021, 6:00 PM
1h 30m


Talk NU | Neutrinos & Muons Discussion


hiroshi ogawa (CST Nihon University, Japan)


XMASS is multi-purpose experiment using liquid xenon and is located at the Kamioka Observatory in Japan. The detector consists of a liquid xenon with a single-phase of 832 kg active volume and has a low energy threshold, low backgrounds and large target mass. In XMASS, it is possible to verify the topics of low energy neutrino physics which would give hints on models beyond SM. Now we have searched for exotic neutrino-electron interactions that could be produced by a neutrino millicharge, by a neutrino magnetic moment, or by dark photons using solar neutrinos in XMASS. We analyzed the data between November 2013 and March 2016 for 711days dataset. No significant signals have been observed with predicting the backgrounds in detector. We obtained an upper limit of neutrino millicharge of $5.4\times10^{-11}$e for all flavors of neutrino. We also set individual flavors to be $7.3 \times 10^{-12} e$ for $\nu_e$, $1.1 \times 10^{-11} e$ for $\nu_{\mu}$, and $1.1 \times 10^{-11} e$ for $\nu_{\tau}$. The limits for $\nu_{\mu}$ and $\nu_{\tau}$ are the best direct experimental limits. We also obtain an upper limit for the neutrino magnetic moment of 1.8$\times$10$^{-10}\mu_{B}$. In addition, we obtain upper limits for the coupling constant of dark photons in the $U(1)_{B-L}$ model of 1.3$\times$10$^{-6}$ if the dark photon mass is 1$\times 10^{-3}$ MeV$/c^{2}$, and 8.8$\times$10$^{-5}$ if it is 10 MeV$/c^{2}$. In particular, we almost exclude the possibility to understand the muon $g-2$ anomaly by dark photons.


neutrino; millicharge; magnetic moment; dark photon; low background; liquid xenon.

other Collaboration XMASS
Collaboration other (fill field below)
Subcategory Experimental Results

Primary authors

Presentation materials