Speaker
Description
The IceCube neutrino observatory opened the window on high-energy neutrino astronomy by confirming the existence of PeV astrophysical neutrinos and identifying the first compelling astrophysical neutrino source in the blazar TXS0506+056. Planning is underway to build an enlarged instrument, IceCube-Gen2, which will extend measurements to higher energies, increase the rate of observed cosmic neutrinos and provide prospects for detecting fainter sources. IceCube-Gen2 is planned to have an enlarged in-ice optical array, a radio array at shallower depths for detecting ultra-high (>100 PeV) neutrinos, and a surface component studying cosmic rays. In this contribution, we will discuss the simulation of the in-ice optical component of the baseline design of the IceCube-Gen2 detector, which foresees the deployment of an additional ~120 new detection strings to the existing 86 in IceCube over ~7 Antarctic summer seasons. Motivated by the phased construction plan for IceCube-Gen2, we discuss how the reconstruction capabilities and sensitivities of the instrument are expected to progress throughout its deployment.
Keywords
neutrino; sensitivity studies
Subcategory | Future projects |
---|---|
Collaboration | IceCube-Gen2 |