7–9 Dec 2021
Virtual Workshop via Zoom
Europe/Berlin timezone

Real-Time Image Acquisition and Processing for Plasma Diagnostics

9 Dec 2021, 14:20
15m
Virtual Workshop via Zoom

Virtual Workshop via Zoom

Workshop Meeting room
Talk Session 8

Speaker

Dariusz Makowski (Lodz University of Technology)

Description

Universal, scalable image acquisition system based on MTCA.4 standard designed and developed by the Department of Microelectronics and Computer Science in Lodz University of Technology is constantly being expanded with support for new cameras and interfaces. For more than 10 years we have been collaborating with several research institutions like ITER, W7X, DESY to collect requirements and provide various imaging systems for diagnostic purposes. Currently, the system supports various camera interfaces (Camera Link, Camera Link HS, GigE Vision) and was integrated and tested with various cameras from different manufacturers.
A growing portfolio of supported devices and significant differences between camera interfaces made the previous software insufficient and difficult to maintain. Therefore, it became increasingly important to create a universal software framework easily expandable and maintainable, able to handle the growing needs for support of new devices - cameras and frame grabbers. The framework, unified from the user point of view, needs to support various frame grabber modules with different interfaces and a wide range of cameras communicating over numerous protocols.
To avoid creating a new homemade standard, the framework is based on the GenICam. It is a common standard developed by leading manufacturers of imaging equipment that provides unified API and clear hardware abstraction layer. The MTCA.4 image acquisition module is integrated with GenICam-based software stuck by providing an appropriate GenICam Transport Layer (GenTL) library. Various cameras with Camera Link interface are supported by providing dedicated CLProtocol libraries. Finally, all the hardware components can be used in a unified way using the common GenAPI interface offered by the GenICam standard.
The software framework includes also console and GUI tools for device control and image acquisition written in C/C++ and Python. Provided software components supporting 3 different cameras have also been successfully integrated with the Java-based control environment of W7-X stellarator using standard GenICam wrapper.

Primary authors

Piotr Perek (Lodz University of Technology, Department of Microelectronics and Computer Science) Mr Michał Basiuras (Lodz University of Technology) Dariusz Makowski (Lodz University of Technology)

Presentation materials