15–18 Mar 2021
DESY
Europe/Berlin timezone

Tuning the high-pressure phase behaviour of ultra-compressible zeolitic imidazolate frameworks – From discontinuous to continuous pore closure by linker substitution

Not scheduled
20m
DESY

DESY

Poster contribution Framework structures: MOFs, COFs, etc. Framework structures: MOFs, COFs, etc.

Speaker

Mr Jianbo Song (Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany)

Description

Zeolitic imidazolate frameworks (ZIFs), a very important subfamily of metal-organic frameworks (MOFs), are constructed from tetrahedrally coordinated M2+ (Zn2+ or Co2+) ions, which are interlinked by imidazolate linkers[1]. Recently, we discovered that the prototypical ZIF-4 (chemical composition M(im)2, im– = imidazolate) undergoes a phase transition from an open pore (op) to a closed pore (cp) phase under hydrostatic pressure[2]. Here we further present the high-pressure (HP) behaviour of a series of isostructural ZIF-4 derivatives, named ZIF-62, with the general chemical composition M(im)2-x(bim)x (bim– = benzimidazolate, 0.02 < x < 0.35). The ZIF-62 materials crystallize in the space group Pbca and feature the same network topology (cag) as the original ZIF-4, however, some of the im– linkers are substituted by the bulkier bim– linkers. HP-PXRD experiments were performed at beamline I15 of Diamond Light Source in the pressure range from ambient up to 4000 bar using silicon oil as a non-penetrating pressure transmitting medium and a hydraulic pressure cell[3]. Under hydrostatic pressure, all ZIF-62 derivatives reversibly contract from the op to the cp phase only by rotations about the imidazolate-metal bonds (Fig. 1). Crystal symmetry and network topology are preserved. With increasing bim–-concentration, the threshold pressure for the op-cp phase transition increases from 700 bar to 1300 bar and the overall volume contraction across the transition decreases from 25% to 17% of the initial volume. Most importantly, the 1st order (discontinuous) transition transfers to a 2nd order (continuous) transition for x > 0.30. Thus, the void space and pore openings of ZIF-62 can be tuned continuously by the application of mechanical pressure – a unique feature which might be useful for adjusting and enhancing the gas separation performance of these flexible MOFs.

Fig. 1. Structural models of ZIF-62 with the composition Zn(im)1.65(bim)0.35 at ambient pressure (left) and 4000 bar (right). The void space available for CO2 molecules (kinetic diameter = 3.30 Å) is shown in gold.

[1] a) J. H. Lee, S. Jeoung, Y. G. Chung, H. R. Moon, Coordination Chemistry Reviews 2019, 389, 161; b) J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chemical reviews 2012, 112, 1001.
[2] S. Henke, M. T. Wharmby, G. Kieslich, I. Hante, A. Schneemann, Y. Wu, D. Daisenberger, A. K. Cheetham, Chemical Science 2018, 9, 1654.
[3] N. J. Brooks, B. L. L. E. Gauthe, N. J. Terrill, S. E. Rogers, R. H. Templer, O. Ces, J. M. Seddon, The Review of scientific instruments 2010, 81, 64103.

Primary authors

Mr Jianbo Song (Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany) Mr Roman Pallach (Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany) Prof. Sebastian Henke (Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany)

Presentation materials

There are no materials yet.