15–18 Mar 2021
DESY
Europe/Berlin timezone

Structural investigations of mixed anionic rare-earth and transition metals selenide oxides using synchrotron radiation

15 Mar 2021, 15:45
20m
DESY

DESY

Oral contribution Inorganic crystal structures Inorganic crystal structures

Speaker

Dr. Christopher Benndorf (Universität Leipzig)

Description

The simultaneous reaction of oxygen, its heavier homologs, and metals usually lead to the formation of substances characterized by the presence of covalent O-Ch (Ch = S, Se) bonds within complex anions like sulfates or selenides. Examples for compounds containing both, O$^{2-}$ and Ch$^{2-}$ without any attractive interaction between these species are far less known. Only a few examples for chalcogenide oxides of transition (T) and rare-earth metals (RE) are described in the literature so far, though exhibiting a relatively high variety in composition and crystal structures.
Salt-flux assisted reactions of rare-earth metals and their oxides, transition metals and selenium lead to the discovery of the mixed anionic selenide oxides RE$_2$ZrSe$_2$O$_3$ (RE = Ce-Nd, Sm) and Ce$_7$TiSe$_5$O$_7$. All these substances appear as thin needle-like crystals with diameters of 5 μm and less which are extraordinarily sensitive to mechanical stress. Consequently, structure determination had to be realized using synchrotron radiation. First investigations of Ce$_7$TiSe$_5$O$_7$ were carried out at the ESRF, beamline ID11, using micro-focused synchrotron radiation. Small crystals were pre-selected and pre-characterized using transmission electron microscopy including EDX spectroscopy [1]. The substance crystallizes with the La$_7$VSe$_5$O$_7$ structure type [2], space group Cmcm, suggesting the presence of Ti$^{3+}$ cations.
The first Zr containing selenide oxides RE$_2$ZrSe$_2$O$_3$ (= 2 RE$^{3+}$Zr$^{4+}$2Se$^{2-}$3O$^{2-}$) were investigated at PETRA III, beamline P24, and the ESRF, beamline ID11. The compounds were found to crystallize with their own structure type, space group C 2/m, characterized by the presence of large cavities extended along [010] formed by Se atoms (see Fig. 1).

Fig. 1: a-c) Crystal structure, bulk material, and SEM-SE image of Nd$_2$ZrSe$_2$O$_3$. d) TEM-BF image of the Pr$_2$ZrSe$_2$O$_3$ single-crystal investigated at ERSF, beamline ID11. The crystal part used for structure determination is emphasized.

[1] F. Fahrnbauer, T. Rosenthal, T. Schmutzler, G. Wagner, G. B. M. Vaughan, J. P. Wright, O. Oeckler, Angew. Chem. Int. Ed. 2015, 54, 10020.
[2] S. Peschke, L. Gamperl, V. Weippert, D. Johrendt, Dalton Trans. 2017, 46, 6230-6243.

Primary author

Dr. Christopher Benndorf (Universität Leipzig)

Presentation materials

There are no materials yet.