Speaker
Description
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose experiment, which is under construction in South China. Thanks to the 20 ktons of ultra-pure liquid scintillator (LS), JUNO will be able to perform innovative and groundbreaking measurements like the determination of neutrino mass ordering (NMO). Beyond NMO, JUNO will measure the three neutrino oscillation parameters with a sub-percent precision. Furthermore, the JUNO experiment is expected to have important physics reach with solar neutrinos, supernova neutrinos, geoneutrinos and atmospheric neutrinos.
The experiment is being constructed in a 700m underground laboratory, located about 53 km from both the Taishan and Yangjiang nuclear power plants. The JUNO central detector (CD) will be equipped with 17612 20-inch photomultiplier tubes (PMTs) and 25600 3-inch PMTs. The central detector will be surrounded by a water tank that will provide passive shielding from radioactivity decays and serve as a water Cherenkov detector to tag cosmic muons. Additionally, a plastic scintillator detector is located above the central detector to veto cosmic muons from the top.
The JUNO CD detector is expected to have an energy resolution better than 3% at 1 MeV and to have an absolute energy scale uncertainty better than 1% over the whole reactor antineutrino energy range.
The detector construction is expected to be completed in 2023. In this talk, I will present the detector design and the installation status of the various JUNO subsystems.
Collaboration / Activity | JUNO Collaboration |
---|