18–20 Sept 2025
Kiel
Europe/Berlin timezone

(Sub-)MM and infrared analysis of Vinyl Chloride

18 Sept 2025, 17:11
1m
Foyer Hans Geiger Hörsaal

Foyer Hans Geiger Hörsaal

Poster Astroparticle Physics Poster session

Speakers

Mr Florian Happ (I. Physikalisches Institut, Universität zu Köln, Köln, Germany)Ms Myrofora Lazaridou (I. Physikalisches Institut, Universität zu Köln, Köln, Germany)

Description

Recently, methyl chloride ($\mathrm{CH_3Cl}$) was detected with ALMA toward the infant star system IRAS 16293–2422 and with the Rosetta space probe in the atmosphere of the comet 67P/C–G$^1$. This gives rise to the question if vinyl chloride ($\mathrm{CH_2CHCl}$) might also be present in these or other astronomical sources. Previous laboratory millimeter and sub-millimeter ((sub-)mm) wave studies were limited in quantum number and frequency coverage$^2$ whereas previous infrared (IR) studies did not cover $\nu_9$, the energetically-lowest fundamental$^3$. Here, we report high-resolution (sub-)mm and IR investigations of vinyl chloride performed in Cologne and at the SOLEIL synchrotron, respectively. The rotational spectrum was recorded from 170 to 1100 GHz, which resulted in more than 3000 newly assigned transitions for the ground state of $\mathrm{C_{2}H_{3\ \,}^{35}\mathrm{Cl}}$ while simultaneously reducing the RMS from 147 kHz to 47 kHz. In addition, the vibrational satellite spectrum of the energetically lowest deformation mode $\nu_9$ has been assigned for the first time. The preceding rotational analysis of the ground vibrational state allowed us to speed up the analyses of the infrared bands using the Automated Spectral Assignment Procedure (ASAP)$^4$. The two energetically lowest fundamentals $\nu_9$ and $\nu_{12}$ can be readily assigned for both $\mathrm{C_{2}H_{3\ }}^{35}\mathrm{Cl}$ and $\mathrm{C_{2}H_{3\ }}^{37}\mathrm{Cl}$. These results will then greatly facilitate pure rotational analyses of the respective vibrational satellite spectra. Based on the new ground state rotational data, highly accurate frequency predictions enable astronomical searches of both isotopologues over a wide frequency and quantum number range.

$^1$Fayolle, et al., Nat. Astron. 1 (2017) 703
$^2$Merke, et al., J. Mol. Spectrosc. 177 (1996) 232
Demaison, et al., J. Mol. Spectrosc. 232 (2005) 174
$^3$Giorgianni, et al., J. Mol. Spectrosc. 156 (1992) 373
Stoppa, et al., Mol. Phys. 91 (1997) 215
Lorenzi, et al., Mol. Phys. 96 (1999) 101
Lorenzi, et al., Mol. Phys. 98 (2000) 355
$^4$M.A. Martin-Drumel, et al., J. Mol. Spectrosc. 315 (2015) 72

Primary authors

Mr Florian Happ (I. Physikalisches Institut, Universität zu Köln, Köln, Germany) Ms Myrofora Lazaridou (I. Physikalisches Institut, Universität zu Köln, Köln, Germany)

Co-authors

Prof. Elena S. Bekhtereva (Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, Russia) Dr Luis Bonah (I. Physikalisches Institut, Universität zu Köln, Köln, Germany) Dr Marie-Aline Martin-Drumel (Institut des Sciences Moléculaires d’Orsay, Université Paris Saclay, CNRS, Orsay, France) Prof. Oleg N. Ulenikov (Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, Russia) Prof. Olga V. Gromova (Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, Russia) Dr Olivier Pirali (Institut des Sciences Moléculaires d’Orsay, Université Paris Saclay, CNRS, Orsay, France) Prof. Stephan Schlemmer (I. Physikalisches Institut, Universität zu Köln, Köln, Germany) Dr Sven Thorwirth (I. Physikalisches Institut, Universität zu Köln, Köln, Germany) Dr Yuliya V. Khudyakova (Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, Russia)

Presentation materials

There are no materials yet.