9 December 2024
Debora Scuderi (Université Paris-Saclay)
Tunable Free Electron Laser and IRMPD Spectroscopy: A perfect synergy to unravel the structure and reactivity of biomolecules in the gas phase
Tandem mass spectrometry (MS/MS) is a key methodology to study biomolecules, with the electrospray ionisation (ESI) being one of the preferred ionization techniques [1]. It is well recognized as an efficient and highly versatile analytical tool [2], however its potential has long been limited by the structural information it can provide.
For this reason, the combination of tandem mass spectrometry with IR Multiple Photon Dissociation (IRMPD) spectroscopy has become a powerful tool for 3D structural characterisation of molecular ions in the gas phase [3].
Exploiting highly intense and widely tunable Free Electron Laser (FEL), IRMPD spectroscopy allows for the derivation of the vibrationals fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions [4].
Because resonant absorption of IR photons depends on molecular vibrations, the subsequent fragmentation event is highly structure specific, revealing characteristic functional groups of the molecule.
These kinds of experiments need to be performed with high power and widely tunable IR sources, i.e. free electrons lasers (FEL) [5,6]. Their temporal structure and high brightness have been shown to be particularly suitable for inducing a rapid increase of the internal energy through an efficient resonant multiple photon absorption process [7]. Furthermore, they are easily tuneable in the mid-infrared region allowing for recording the IR spectra in the so-calles IR fingerprint region.
Some examples for IRMPD spectroscopy performed at the CLIO Facility in Orsay are presented here to illustrate how IRMPD spectroscopy can be exploited to learn more about the molecules in space [8], to detect posttranslation modifications [9 and refs within] or to probe the structure of UV-induced fragmentation products [10].
References
[1] C.M. Whitehouse, R.N. Dreyer, M. Yamashita, and J.B. Fenn, Anal. Chem. 1985, 57, 3, 675.
[2] J.D.Bridgewater, R.Srikanth , J. lim and R.W. Vachet J. Am. Soc. Mass Spectrom. 2007, 18 553.
[3] A. Rijs and J.Oomens, In Topics in Current Chemistry, Vol. 364, Spring Edition, 2015; N.C. Polfer, Chem. Soc. Rev. 2011, 40, 5, 2211.
[4] Jos Oomens, A. J. A. van Roij, G. Meijer, and G. von Helden ApJ , 2000, 542, 404; J. Lemaire, P. Boissel, H. Mestdagh, M. Heninger, J. Mauclaire, G. Bellec, H. Simon, S. Le Caer, J.M. Ortega, F. Glotin and P. Maitre, Phys. Rew. Lett., 2002, 89, 273002; L. Mac Aleese, A. Simon, T.B. McMahon, J.M. Ortega, D. Scuderi, J. Lemaire, P. Maitre, Int. J. of Mass Spectrom. 2006, 249, 14; J. M. Bakker, T. Besson, J. Lemaire, D. Scuderi and P. Maitre, J. of Phys. Chem. A, 2007, 111, 13415.
[5] D. Oepts, A.F.G. van deer Meer, P.W. van Amersfoort, Infrared Phys.Techol.,1995, Vol. 36, N.1, 297.
[6] R. Prazeres, F. Glotin, C. Insa, D.A. Jaroszynski, J. Ortega, Eur. Phys. J. D 1998, 3, 1, 87.
[7] D.J. Nesbitt, R.W. Field. J. of Phys. Chem. 1996, 100, 31, 12735.
[8] D. Scuderi, A. Perez-Mellor, J. Lemaire, S. Indrajith, J.-X. Bardaud, A. Largo, Y. Jeanvoine and R. Spezia, ChemPhysChem, 2020, 21, 503.
[9] P. Maitre, D. Scuderi, D. Corinti, B. Chiavarino, M.E. Crestoni, S. Fornarini Chem. Rev., 2020, 120, 3261.
[10] D. Scuderi, V. Lepere, G. Piani, A. Bouchet and A. Zehnacker-Rentien J. of Phys. Chem. Lett., 2014, 5, 56.