This talk based on "Tri-bimaximal Mixing and Cabibbo Angle in S(4) Flavor Model with SUSY", arXiv:1004.5004 (PRD in press 2010),
"Non-Abelian Discrete Symmetries in Particle Physics", Prog. Theor. Phys. Supplement, No. 183 (2010), and
"Delta(54) Flavor Model for Leptons and Sleptons", JHEP 0912:054, 2009.
These works are collaborated with Tatsuo Kobayashi, Morimitsu Tanimoto, et al.
Non-Abelian discrete symmetry can lead to tri-bimaximal mixing, since non-Abelian discrete symmetry connects different generations. Especially, A(4) flavor symmetry gives the tri-bimaximal mixing at first. However, it is difficult to explain mixing of both quarks and leptons clearly. Therefore, our purpose is building a new model with non-Abelian discrete flavor symmetry S(4), which can explain both lepton mixing and quark mixing. Then, we present a flavor model of quarks and leptons with the non-Abelian discrete symmetry S(4) in the framework of
the SU(5) SUSY GUT. We predict the Cabibbo angle as well as the tri-bimaximal mixing of neutrino flavors. The non-Abelian discrete flavor symmetry constrains not only quark/lepton mass matrices, but also mass matrices of their superpartner, i.e. squark/slepton. Then, we study SUSY breaking terms in the slepton sector. Our model suppresses flavor changing neutral currents compared with the present experimental bounds.